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ViennaRNA, Release 2.6.4

The core of the ViennaRNA Package (Lorenz et al. [2011], Hofacker et al. [1994]) is formed by a collection of
routines for the prediction and comparison of RNA secondary structures. These routines can be accessed through
stand-alone programs, such as RNAfold, RNAdistance etc., which should be sufficient for most users. For those
who wish to develop their own programs we provide RNAIib, a C-library that can be linked to your own code or
even used in your scripts and pipelines through our SWIG Wrappers for Python and Perl 5.

The latest version of the package including source code and html versions of the documentation can be found at
https://www.tbi.univie.ac.at/RNA and https://github.com/ViennaRNA/ViennaRNA.
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CHAPTER
ONE

INSTALLATION

The ViennaRNA Package comes with a variety of executable programs and scripts as well as a C-library that
provides access to our implemented algorithms. Moreover, the C-library is wrapped to scripting languages such as
Perl 5 and Python.

Note: For best portability the ViennaRNA package uses the GNU autoconf and automake tools to prepare
the compilation from source code. Read the Configuration section before you install our software if you intend to
deviate from the default setup.

1.1 Installing from Source

The instructions below are for installing the ViennaRNA package from source. However, pre-compiled binaries
for various Linux distributions, as well as for Windows users are available at the download section of the official
ViennaRNA homepage.

See also...

Binary packages, Using conda, and Python interface only

1.1.1 Quick-start

Usually you’ll just download the latest source tarball, unpack, configure and make. To do this type:

tar -zxvf ViennaRNA-2.6.4.tar.gz
cd ViennaRNA-2.6.4

./configure

make

sudo make install

1.1.2 Installing from git repository

You can also get the latest source code from our git repository hosted at https://github.com:

[git clone https://github.com/ViennaRNA/ViennaRNA.git }

However, to proceed with the configuration and installation you need to perform some additional steps before
actually running the . /configure script:

1. Unpack the 1ibsvm archive to allow for SVM Z-score regression with the program RNALfold:
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[tar -xzf src/libsvm-3.31.tar.gz -C src ]

2. Unpack the dlib archive to allow for concentration dependency computations with the program
RNAmultifold:

[tar -xjf src/dlib-19.24.tar.bz2 -C src }

3. Install the additional maintainer tools gengetopt, help2man, flex, xxd, and swig if necessary. For in-
stance, in RedHat based distributions, the following packages need to be installed:

* gengetopt (to generate command line parameter parsers)

* help2man (to generate the man pages)

* yacc, flex and flex-devel (to generate sources for RNAforester)
* vim-common (for the xxd program)

* swig (to generate the scripting language interfaces)

e liblapacke (for RNAxplorer)

e liblapack (for RNAxplorer)

e A fortran compiler, e.g. gcc-gfortran (for RNAxplorer)

4. Finally, run the autoconf/automake toolchain:

[autoreconf -i

After that, you can compile and install the ViennaRNA Package as if obtained from the distribution tarball.

1.1.3 Building the reference manual

Our implementations are documented with extra comments that are automatically parsed by doxygen. The extracted
API documentation is then processed further by breathe and finally integrated into a comprehensive reference
manual written in ReStructuredText. This manual is then usually compiled into HTML and PDF format by Sphinx.

We provide pre-compiled versions of the reference manual in our distribution tarballs and HTML versions at
https://www.tbi.univie.ac.at/RNA/ViennaRNA/refman and https://viennarna.readthedocs.io. However, under cer-
tain circumstances users might want to compile the reference manual themselves, e.g. when installing from git
repository.

To succeed with the compilation the following tools are required:
¢ doxygen (to extract the API documentation)
* sphinx-build (to compile the manual)
* pdflatex (to compile a PDF version of the manual)
In addition, we use the following sphinx extensions:
e sphinx-multiproject
* myst-parser
¢ sphinx-copybutton
¢ sphinxcontrib-bibtex
¢ sphinx-rtd-theme

If all the above programs and python packages are available, compilation of the reference manual should succeed
without any further problems.
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1.1.4 Installation without root privileges

If you do not have root privileges on your computer, you might want to install the ViennaRNA Package to a location
where you actually have write access to. To do so, you can set the installation prefix of the . /configure script
like so:

./configure --prefix=/home/username/.local
make install

This will install the entire ViennaRNA Package into your home’s ~/.1local/ directory that is commonly used
for user-installed software. Just make sure that your PATH environment variable contains the $HOME/.local/bin
directory such that our executables are looked-up for at the proper location.

Tip: The --prefix can be any other directory if you want to keep your installed software separate from each
other. The make install command will then create the corresponding bin/, 1ib/, share/ directories within
the directory you specified.

1.1.5 MacOS X users

Although users will find /usr/bin/gcc and /usr/bin/g++ executables in their directory tree, these programs are
not at all what they pretend to be. Instead of including the GNU programs, Apple decided to install clang/11vmin
disguise. Unfortunately, the default version of clang/11vm does not support OpenMP (yet), but only complains at
a late stage of the build process when this support is required. Therefore, it seems necessary to deactivate OpenMP
support, e.g.:

{ ./configure --disable-openmp

See also...

OpenMP, Universal binaries, and Missing EXTERN.h

1.2 Using conda

The ViennaRNA Package is also available for the conda or mamba package manager. The only requirement is to
set up the bioconda channels

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge
conda config --set channel_priority strict

and then you can easily install the viennarna bioconda package through

[conda install viennarna

1.2. Using conda 5
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1.3 Binary packages

For convenience, we provide pre-compiled binary packages and installers for several Linux-based platforms, Mi-
crosoft Windows, and Mac OS X. They can be obtained from our official website.

1.4 Python interface only

The Python 3 interface for the ViennaRNA Package library is available at PyPI and can be installed independently
using Python’s pip:

[python -m pip install viennarna }

1.4.1 Building the Python package

Our source tree allows for building/installing the Python 3 interface separately. For that, we provide the necessary
packaging files pyproject.toml, setup.cfg, setup.py and MANIFEST. in. They are created by our autoconf
toolchain after a successful run of ./configure. Particular default compile-time features may be (de-)activated
by setting the corresponding boolean flags in setup.cfg. Running

[python -m build }

will then create a source distribution (sdist) and a binary package (wheel) in the dist/ directory. These files
can be easily installed via Python’s pip.

Note: If you are about to create the Python interface from a fresh clone of our git repository, you require addi-
tional steps after running . /configure as described above. In particular, some autogenerated static files that are
compiled into RNAIlib must be generated. To do so, run

cd src/ViennaRNA/static
make

@6l ooffoafoa

Additionally, if building the reference manual is not explicitly turned off, the Python interface requires docstrings
to be generated. They are taken from the doxygen xml output which can be created by

cd doc
make refman-html
cd ..

Finally, the swig wrapper must be build using

cd interfaces/Python
make RNA/RNA.py
cd ../..

After these steps, the Python sdist and wheel packages can be build as usual.

6 Chapter 1. Installation
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1.5 Unofficial Julia Interface

An unofficial interface of the ViennaRNA Package for the Julia Programming Language exists at JuliaHub.

1.5. Unofficial Julia Interface 7
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CHAPTER
TWO

CONFIGURATION

The ViennaRNA Package includes additional executable programs such as
e RNAforester,
* Kinfold,
¢ Kinwalker,
e RNAlocmin, and
* RNAxplorer.

Furthermore, we include several features in our C-library that may be activated by default, or have to be explicitly
turned on at configure-time. Below we list a selection of the available configure options that affect the features
included in all executable programs, the RNAlib C-library, and the corresponding scripting language interface(s).

2.1 Streaming SIMD Extension

Since version 2.3.5 our sources contain code that implements a faster multibranch loop decomposition in global
MFE predictions, as used e.g. in RNAfold. This implementation makes use of modern processors streaming
SIMD extension (SSE) that provide the capability to execute particular instructions on multiple data simultaneously
(SIMD - single instruction multiple data, thanks to W. B. Langdon for providing the modified code). Consequently,
the time required to assess the minimum of all multibranch loop decompositions is reduced up to about one half
compared to the runtime of the original implementation. This feature is enabled by default since version 2.4.11
and a dispatcher ensures that the correct implementation will be selected at runtime. If for any reason you want to
disable this feature at compile-time use the following:

[./configure --disable-simd ]

2.2 Scripting Language Interfaces

The ViennaRNA Package comes with scripting language interfaces for Perl 5, Python (provided by SWIG), that
allow one to use the implemented algorithms directly without the need of calling an executable program. The nec-
essary requirements are determined at configure-time and particular languages may be deactivated automatically
if the requirements are not met.

Note: Building the Python 2 interface is deactivated by default since it reached its end-of-life on January 1st,
2020. If for any reason you still want to build that interface, you may use the --with-python2 configure option
to turn it back on.

You may also switch-off particular languages by passing the --without-perl and/or --without-python con-
figure options, e.g.:
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[ ./configure --without-perl --without-python

will turn-off the Perl 5 and Python 3 interfaces.

Tip: Disabling the scripting language support all-together can be accomplished using the following switch:

[ ./configure --without-swig

2.3 Cluster Analysis

The programs AnalyseSeqs and AnalyseDists offer some cluster analysis tools (split decomposition, statistical
geometry, neighbor joining, Ward’s method) for sequences and distance data. To also build these programs add
--with-cluster to your configure options.

2.4 Kinfold

The kinfold program can be used to simulate the folding dynamics of an RNA molecule, and is compiled by
default. Use the --without-kinfold option to skip compilation and installation of Kinfold.

2.5 RNAforester

The RNAforester program is used for comparing secondary structures using tree alignment. Similar to
kinfold , use the " --without-forester option to skip compilation and installation of RNAforester.

2.6 Kinwalker

The kinwalker algorithm performs co-transcriptional folding of RNAs, starting at a user specified structure (de-
fault: open chain) and ending at the minimum free energy structure. Compilation and installation of this program
is deactivated by default. Use the --with-kinwalker option to enable building and installation of kinwalker.

2.7 RNAlocmin

The RNAlocmin program is part of the Basin Hopping Graph Framework and reads secondary structures and
searches for local minima by performing a gradient walk from each of those structures. It then outputs an energeti-
cally sorted list of local minima with their energies and number of hits to particular minimum, which corresponds to
a size of a gradient basin. Additional output consists of barrier trees and Arhenius rates to compute various kinetic
aspects. Compilation and installation of this program is activated by default. Use the --without-rnalocmin
option to disable building and installation of RNAlocmin.
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2.8 RNAXxplorer

The RNAxplorer is a multitool, that offers different methods to explore RNA energy landscapes. In default mode
it takes an RNA sequence as input and produces a sample of RNA secondary structures. The repellant sampling
heuristic used in default mode iteratively penalizes base pairs of local minima of structures that have been seen too
often. This results in a diverse sample set with the most important low free energy structures. Compilation and
installation of this program is activated by default. Note, that this tool depends on the LAPACK library. Use the
--without-rnaxplorer option to disable building and installation of RNAxplorer.

2.9 Link Time Optimization

To increase the performance of our implementations, the ViennaRNA Package tries to make use of the Link Time
Optimization (LTO) feature of modern C-compilers. If you are experiencing any troubles at make-time or run-time,
or the configure script for some reason detects that your compiler supports this feature although it doesn’t, you can
deactivate it using the flag:

[./configure --disable-1to ]

Note, that gcc before version 5 is known to produce unreliable LTO code, especially in combination with SIMD.
We therefore recommend using a more recent compiler (GCC 5 or above) or to turn off one of the two features,
LTO or SIMD optimized code.

2.10 OpenMP

To enable concurrent computation of our implementations and in some cases parallelization of the algorithms we
make use of the OpenMP API. This interface is well understood by most modern compilers. However, in some
cases it might be necessary to deactivate OpenMP support and therefore transform RNA/ib into a C-library that is
not entirely thread-safe. To do so, add the following configure option:

[./configure --disable-openmp ]

2.11 POSIX threads

To enable concurrent computation of multiple input data in RNAfold, and for our implementation of the concurrent
unordered insert, ordered output flush data structure vrna_ostream_t we make use of POSIX threads (pthread).
This should be supported on all modern platforms and usually does not pose any problems. Unfortunately, we use
a threadpool implementation that is not compatible with Microsoft Windows yet. Thus, POSIX thread support can
not be activated for Windows builds until we have fixed this problem. If you want to compile RNAfold and RNAIlib
without POSIX threads support for any other reasons, add the following configure option:

[./configure --disable-pthreads }

2.8. RNAXxplorer 11
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2.12 SVM Z-score filter

By default, RNALfold that comes with the ViennaRNA Package allows for Z-score filtering of its predicted results
using a Support Vector Machine (SVM) provided by the LIBSVM library. However, this library is statically linked
to our own RNA/ib. If this introduces any problems for your own third-party programs that link against RNAIib,
you can safely switch off the Z-scoring implementation using:

[./configure --without-svm }

2.13 GNU Scientific Library

The program RNApvmin computes a pseudo-energy perturbation vector that aims to minimize the discrepancy of
predicted, and observed pairing probabilities. For that purpose it implements several methods to solve the opti-
mization problem. Many of them are provided by the GNU Scientific Library (GSL), which is why the RNApvmin
program, and the RNAlib C-library are required to be linked against 1ibgsl. If this introduces any problems in
your own third-party programs that link against RNAIib, you can turn off a larger portion of available minimizers
in RNApvmin and linking against 1ibgs1 all-together, using:

[ ./configure --without-gsl

2.14 Multiple-precision Floating-Point Computations

Our Non-redundant Boltzmann Sampling implementation uses multi-precision floating-point computations pro-
vided by the GNU MPFR library by default. This requires linking against 1ibmpfr and 1ibgmp. You can switch
off this feature using:

[ ./configure --disable-mpfr

2.15 Universal binaries

If you intend to build the ViennaRNA for Mac OS X such that it runs on both, x86_64 and the arm64 (Apple Silicon
Processors) architectures, you need to build a so-called universal binary. Note, however, that to accomplish this
task, you might need to deactivate any third-party library dependency as in most cases, only one architecture will
be available at link time. This includes the Perl 5 and Python interfaces but might also concern also MPFR
and GSL support, possibly even more. In order to compile and link the programs, library, and scripting language
interfaces of the ViennaRNA Package for multiple architectures, we’ve added a new configure switch that sets up
the required changes automatically:

[ ./configure --enable-universal-binary

Note:  With link time optimization turned on, MacOS X’s default compiler (11vm/clang) generates an in-
termediary binary format that can not easily be combined into a multi-architecture library. Therefore, the
--enable-universal-binary switch turns off Link Time Optimization!
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2.16 Disable C11/C++11 features

By default, we use C11/C++11 features in our implementations. This mainly accounts for unnamed unions/structs
within RNAIib. The configure script automatically detects whether or not your compiler understands these features.
In case you are using an older compiler, these features will be deactivated by setting a specific pre-processor
directive. If for some reason you want to deactivate C11/C++11 features despite the capabilities of your compiler,
use the following configure option:

[./configure --disable-cl1

2.17 Deprecated symbols

Since version 2.2 we are in the process of transforming the API of our RNAlib. Hence, several symbols are marked
as deprecated whenever they have been replaced by the new API. By default, deprecation warnings at compile time
are deactivated. If you want to get your terminal spammed by tons of deprecation warnings, enable them using:

[./configure --enable-warn-deprecated }

2.18 Single precision

Calculation of partition functions (via RNAfold -p) uses double precision floats by default, to avoid overflow
errors on longer sequences. If your machine has little memory and you don’t plan to fold sequences over 1,000
bases in length you can compile the package to do the computations in single precision by running:

[./configure --enable-floatpf }

Warning: Using this option is discouraged and not necessary on most modern computers.

2.19 Help

For a complete list of all . /configure options and important environment variables, type:

[ ./configure --help

For more general information on the build process see the INSTALL file.

2.16. Disable C11/C++11 features 13
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CHAPTER
THREE

GETTING STARTED

Here you find some more or less elaborate tutorials and manuals on how to use our software.

Note: The tutorials provided below are mostly taken from A short Tutorial on RNA Bioinformatics The Vien-
naRNA Package and related Programs. Since they have not been updated for quite some time, some of the described
features may not work as expected and novel features of our programs may not be mentioned.

We will be working on extending this part of the documentation in the future.

3.1 Global RNA Secondary Structure Prediction

Several tools for structure prediction of single RNA sequences are available within the ViennaRNA Package, each
with its own special subset of implemented algorithms.

3.1.1 The Program RNAfold

Introduction

Our first task will be to do a structure prediction using RNAfold. This should get you familiar with the input and
output format as well as the graphical output produced.

RNAfold reads single RNA sequences, computes their minimum free energy (MFE) structures, and prints the re-
sult together with the corresponding MFE structure in dot-bracket notation. This is the default mode if no further
command line parameters are provided. Please note, that the RNAfold program can either be used in interactive
mode, where the program expects the input from stdin, or in batch processing mode where you provide the input
sequences as text files.

Partition function

To activate computation of the partition function for each sequence, the -p option must be set. From the partition
function

Q= exp(~E(s)/RT)

seEQ

over the ensemble of all possible structures {2, with temperature 7" and gas constant R, RNAfold then computes
the ensemble free energy G = —RT - In(Q), and frequency of the MFE structure s,, s, within the ensemble

p = exp(—E(smse)/RT)/Q

15


https://www.tbi.univie.ac.at/RNA/tutorial/
https://www.tbi.univie.ac.at/RNA/tutorial/

ViennaRNA, Release 2.6.4

Ensemble diversity

By default, the -p option also activates the computation of base pairing probabilities p;;. From this data, RNAfold
then determines the ensemble diversity

(d) = Zpij (1= pij)s

i.e. the expected distance between any two secondary structure, as well as the centroid structure, i.e. the structure
s with the least Boltzmann weighted distance

da(sc) = Z p(s)d(sc, s)
sEQ

to all other structures s € €.

Maximum Expected Accuracy

Another useful structure representative one can determine from base pairing probabilities p;; is the structure that
exhibits the maximum expected accuracy (MEA). By assuming the base pair probability is a good measure of
correctnes of a pair (i, 7), the expected accuracy of a structure s is

EA(s)= > 2w+ Y
(ha)es #ij)es
withg, =1-5" ; Pij and weighting factor ~y that allows us to weight paired against unpaired positions. RNAfold

uses a dynamic programming scheme similar to the Maximum Matching algorithm of Ruth Nussinov to find the
structure s that minimizes the above equation.

The RNAfold program provides a large amount of additional computation modes that will be partly covered below.
To get a full list of all computation modes available, please consult the RNAfold man page or the outputs of
RNAfold -h and RNAfold --detailed-help.

MFE structure of a single sequence

 Use a text editor (emacs, vi, nano, gedit) to prepare an input file by pasting the text below and save it under
the name test.seq in your Data folder:

> test

CUACGGCGCGGCGCCCUUGGCGA

* Compute the best (MFE) structure for this sequence using batch processing mode

$ RNAfold test.seq
CUACGGCGCGGCGCCCUUGGCGA

........... (CCC...33)). € -5.00)

or use the interactive mode and redirect the content of test.seq to stdin

r$ RNAfold < text.seq
CUACGGCGCGGCGCCCUUGGCGA
........... (CCC..0)). C -5.00)

L J

* alternatively, you could use the interactive mode and manually enter the sequence as soon as RNAfold
prompts for input

16 Chapter 3. Getting Started
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‘s RNAfold

Input string (upper or lower case); @ to quit
. O O YO o B A <
CUACGGCGCGGCGCCCUUGGCGA

length = 23

CUACGGCGCGGCGCCCUUGGCGA

........... CCCC...0.
minimum free energy = -5.00 kcal/mol

All the above variants to compute the MFE and the corresponding structure result in identical output, except for
slight variations in the formatting when true inferactive mode is used. The last line(s) of the text output contains
the predicted MFE structure in dot-bracket notation and its free energy in kcal/mol. A dot in the dot-bracket
notation represents an unpaired position, while a base pair (i, j) is represented by a pair of matching parentheses at
position i and j.

If the input was FASTA formatted, i.e. the sequence was preceded by a header line with sequence identifier, RNAfold
creates a structure layout file named test_ss.ps, where test is the sequence identifier as provided through the
FASTA header. In case the header was omitted the output file name simply is rna.ps.

Let’s take a look at the output file with your favorite PostScript viewer, e.g. gv.

Note: In contrast to bitmap based image files (such as GIF or JPEG) PostScript files contain resolution independent
vector graphics, suitable for publication. They can be viewed on-screen using a postscript viewer such as gv or
evince. Also note the & at the end of the following command line that simply detaches the program call and
immediately starts the program in the background.

[$ gv test_ss.ps & J

Compare the dot-bracket notation to the PostScript drawing shown in the file test_ss. eps.

You can use the -t option to change the layout algorithm RNAfold uses to produce the plot. The most simply
layout is the radial layout that can be chosen with -t 0. Here, each nucleotide in a loop is equally spaced on its
enclosing circle. The more sophisticated Naview layout algorithm is used by default but may be explicitly chosen
through -t 1. A hidden feature can be found with -t 2, where RNAfold creates a most simple circular plot.

The calculation above does not tell us whether we can actually trust the predicted structure. In fact, there may
be many more possible structures that might be equally probable. To find out about that, let’s have a look at the
equilibrium ensemble instead.

Equilibrium ensemble properties

¢ Run:

£$ RNAfold -p --MEA J

to compute the partition function, pair probabilities, centroid structure, and the maximum expected accuracy
(MEA) structure.

* Have a look at the generated PostScript files test_ss.ps and test_dp.ps

$ RNAfold -p --MEA test.seq
CUACGGCGCGGCGCCCUUGGCGA
........... CCCC.-0))). C -5.00)
LT D3R T -5.72]
....................... { 0.00 d=4.66}
...... C...))CC...)). .. { 2.90 MEA=14.79}
frequency of mfe structure in ensemble 0.311796; ensemble diversity 6.36

3.1. Global RNA Secondary Structure Prediction 17
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Here the last four lines are new compared to the text output without the -p --MEA options. The partition function
is already a rough measure for the well-definedness of the MFE structure. The third line shows a condensed repre-
sentation of the pair probabilities of each nucleotide, similar to the dot-bracket notation, followed by the ensemble
free energy (G = —kT - In(Z)) in units of kcal/mol. Here, the dot-bracket like notation consists of additional
characters that denote the pairing propensity for each nucleotide. . denotes bases that are essentially unpaired,
, weakly paired, | strongly paired without preference, {}, () weakly (> 33%) upstream (downstream) paired or
strongly (> 66%) up-/downstream paired bases, respectively.

The next two lines represent (i) the centroid structure with its free energy and distance to the ensemble, and (ii)
the MEA structure, it’s free energy and the actual accuracy. The very last line shows the frequency of the MFE
structure in the ensemble of secondary structures and the diversity of the ensemble as discussed above.

Note that the MFE structure is adopted only with 31% probability, also the diversity is very high for such a short
sequence.

Rotate the structure plot

To rotate the secondary structure plot that is generated by RNAfold the ViennaRNA Package provides the perl
script utility rotate_ss.pl. Just read the perldoc for this tool to know how to handle the rotation and use the
information to get your secondary structure in a vertical position.

[$ perldoc rotate_ss.pl }

18 Chapter 3. Getting Started
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The base pair probability dot plot

test
CUACGGCGCGGCGCCCUUGGCGA

¥yooH5NNI220HDHHIHIHHIVND
¥ooH5HNNI22I0HIHHIBHIHHIVNI

CUACGGCGCGGCGCCCUUGGCGA

The dot plot (test_dp.ps) shows the pair probabilities within the equilibrium ensemble as n X n matrix, and is
an excellent way to visualize structural alternatives. A square at row ¢ and column j indicates a base pair. The area
of a square in the upper right half of the matrix is proportional to the probability of the base pair (7, j) within the
equilibrium ensemble. The lower left half shows all pairs belonging to the MFE structure. While the MFE consists
of a single helix, several different helices are visualized in the pair probabilities.

While a base pair probability dot-plot is quite handy to interpret for short sequences, it quickly becomes confusing
the longer the RNA sequence is. Still, this is (currently) the only output of base pair probabilities for the RNAfold
program. Nevertheless, since the dot plot is a true PostScript file, one can retrieve the individual base pair
probabilities by parsing its textual content.

* Open the dot plot with your favorite text editor

¢ Locate the lines that that follow the scheme

[i j v ubox

where ¢ and j are integer values and v is a floating point decimal with values between 0 and 1. These are
the data for the boxes drawn in the upper triangle. The integer values ¢ and j denote the nucleotide positions
while the value v is the square-root of the probability of base pair (4, j). Thus, the actual base pair probability

p(i,j) =v-v.

Mountain and Reliability plot

Next, let’s use the relplot.pl utility to annotate which parts of a predicted MFE structure are well-defined and
thus more reliable. Also let’s use a real example for a change and produce yet another representation of the predicted
structure, the mountain plot.

Fold the 5S rRNA sequence and visualize the structure. (The 5S.seq is shipped with the tutorial)

$ RNAfold -p 5S.seq
$ mountain.pl 5S_dp.ps | xmgrace -pipe
$ relplot.pl 5S_ss.ps 5S_dp.ps > 5S_rss.ps
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A mountain plot is especially useful for long sequences where conventional structure drawings become terribly
cluttered. It is a xy-diagram plotting the number of base pairs enclosing a sequence position versus the position.
The Perl script mountain.pl transforms a dot plot into the mountain plot coordinates which can be visualized
with any xy-plotting program, e.g. xmgrace.

The resulting plot shows three curves, two mountain plots derived from the MFE structure (red) and the pairing
probabilities (black) and a positional entropy curve (green). Well-defined regions are identified by low entropy. By
superimposing several mountain plots structures can easily be compared.

The perl script relplot.pl adds reliability information to a RNA secondary structure plot in the form of color
annotation. The script computes a well-definedness measure we call *"positional entropy”

S(i) == pijlog(pi;)

and encodes it as color hue, ranging from red (low entropy, well-defined) via green to blue and violet (high entropy,
ill-defined). In the example above two helices of the 5SS RNA are well-defined (red) and indeed predicted correctly,
the left arm is not quite correct and disordered.

For the figure above we had to rotate and mirror the structure plot, e.g.

[$ rotate_ss.pl -a 180 -m 5S_rss.ps > 5S_rot.ps }

Batch job processing

In most cases, one doesn’t only want to predict the structure and equilibrium probabilities for a single RNA sequence
but a set of sequences. RNAfold is perfectly suited for this task since it provides several different mechanisms to
support batch job processing. First, in interactive mode, it only stops processing input from stdin if it is requested
to do so. This means that after processing one sequence, it will prompt for the input of the next sequence. Entering
the @ character will forcefully abort processing. In situations where the input is provided through input stream
redirection, it will end processing as soon stream is closed.

In constrat to that, the batch processing mode where one simply specifies input files as so-called unnamed command
line parameters, the number of input sequences is more or less unlimited. You can specify as many input files as
your terminal emulator allows, and each input file may consist of arbitrarily many sequences. However, please note
that mixing FASTA and non-fasta input is not allowed and will most likely produce bogus output.

Assume you have four input files file_0.fa, file_1.fa, file_2.fa, and file_3. fa. Each file contains a set
of RNA sequences in FASTA format. Predicting secondary structures for all sequences in all files with a single call
to RNAfold and redirecting the output to a file all_sequences_output.fold can be achieved like this: .. code:

[$ RNAfold file_0.fa file_1.fa file_2.fa file_3.fa > all_sequences_output.fold }

The above call to RNAfold will open each of the files and process the sequences sequentially. This, however, might
take a long time and the sequential processing will most likely bore out your multi-core workstation or laptop
computer, since only a single core is used for the computations while the others are idle. If you happen to have
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more than a single CPU core and want to take advantage of the available parallel processing power, you can use
the -j option of RNAfold to split the input into concurrent jobs.

[$ RNAfold -j file_*.fa > all_sequences_output.fold }

This command will uses as many CPU cores as available and, therefore, process you input much faster. If you want
to limit the number of concurrent jobs to a particular number, say 2, to leave the remaining cores available for other
tasks, you can append the number of jobs directly to the -j option: .. code:

[$ RNAfold -j2 file_*.fa > all_sequences_output.fold }

Note here, that there must not be any space between the j and the number of jobs.

Now imagine what happens if you have a larger set of sequences that are not stored in FASTA format. If you would
serve such an input to RNAfold, it would happily process each of the sequences but always over-write the structure
layout and dot-plot files, since the default names for these files are rna.ps and dot.ps for any sequence. This is
usually an undesired behavior, where RNAfold and the --auto-id option becomes handy. This option flag forces
RNAfold to automatically create a sequence identifier for each input, thus using different file names for each single
output. The identifier that is created follows the form .. code:

[sequence_XXXX J

where sequence is a prefix, followed by the delimiting character _, and an increasing 4-digit number XXXX starting
at 0000. This feature is even useful if the input is in FASTA format, but one wants to enforce a novel naming scheme
for the sequences. As soon as the --auto-id option is set, RNAfold will ignore any id taken from existing FASTA
headers in the input files.

See also the man page of RNAfold to find out how to modify the prefix, delimiting character, start number and
number of digits.

* Create an input file with many RNA sequences, each on a separate line, e.g.:

[$ randseq -n 127 > many_files.seq }

* Compute the MFE structure for each of the sequences and generate output ids with numbers between 100
and 226 and prefix test_seq:

[$ RNAfold --auto-id --id-start=100 --id-prefix="test_seq" many_files.seq }

Add constraints to the structure prediction

For some scientific questions one requires additional constraints that must be enforced when predicting secondary
structures. For instance, one might have resolved parts of the structure already and is simply interested in the
optimal conformation of the remaining part of the molecule. Another example would be that one already knows
that particular nucleotides can not participate in any base pair, since they are physically hindered to do so. These
types of constraints are termed hard constraints and they can enforce or prohibit particular conformations, thus
include or omit structures with these feature from the set candidate ensemble.

Another type of constraints are so-called soft constraints, that enable one to adjust the free energy contributions of
particular conformations. For instance, one could add a bonus energy if a particular (stretch of) nucleotides is left
unpaired to emulate the binding free energy of a single strand binding protein. The same can be applied to base
pairs, for instance one could add a penalizing energy term if a particular base pair is formed to make it less likely.

The RNAfold programs comes with a comprehensive hard and soft constraints support and provides several con-
venience command line parameters to ease constraint application.

The most simple hard constraint that can be applied is the maximum base pair span, i.e. the maximum number of
nucleotides a particular base pair may span. This constraint can be applied with the --maxBPspan option followed
by an integer number.

* Compute the secondary structure for the 5S. seq input file
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* Now limit the maximum base pair span to 50 and compare both results:

[$ RNAfold --maxBPspan 50 5S.seq

)

Now assume you already know parts of the structure and want to fill-in an optimal remaining part. You can do that
by using the -C option and adding an additional line in dot-bracket notation to the input (after the sequence) that
corresponds to the known structure:

* Prepare the input file hard_const_example. fa:

>my_constrained_sequence
GCCCUUGUCGAGAGGAACUCGAGACACCCACUACCCACUGAGGACUUUCG
P(CCETIY ))))

Note here, that we left out the remainder of the input structure constraint that will eventually be used to
enforce a helix of 4 base pairs at the beginning of the sequence. You may also fill the remainder of the
constraint with dots to silence any warnings issued by RNAfold.

* Compute the MFE structure for the input:

($ RNAfold hard_const_example. fa

>my_constrained_sequence
GCCCUUGUCGAGAGGAACUCGAGACACCCACUACCCACUGAGGACUUUCG

........ (O (@S DD FES DD D DD I @ - N\ [V))]

Now compute the MFE structure under the provided constraint:

$ RNAfold -C hard_const_example.fa
>my_constrained_sequence
GCCCUUGUCGAGAGGAACUCGAGACACCCACUACCCACUGAGGACUUUCG

-G 23D CCCCC . CCCCannnnnn 2).))..02))) ( -7.90)

J

* Due to historic reasons, the -C option alone only forbids any base pairs that are incompatible with the con-
straint, rather than enforcing the constraint. Thus, if you compute equilibrium probabilities, structures that
are missing the small helix in the beginning are still part of the ensemble. If you want to compute the pairing
probabilities upon forcing the small helix at the beginning, you can add the --enforceConstraint option:

$ RNAfold -p -C --enforceConstraint hard_const_example.fa
>my_constrained_sequence
GCCCUUGUCGAGAGGAACUCGAGACACCCACUACCCACUGAGGACUUUCG
P )))) .. CCCCC - e e 2)))-0)))) ( -7.90)

Have a look at the differences in ensemble free energy and base pair probabilities between the results obtained
with and without the --enforceConstraint option.

A more thorough alternative to provide constraints is to use the --commands option and a corresponding commands
file. This allows one to specify constraints on nucleotide or base pair level and even to restrict a constraint to
particular loop types. A commands file is a simple multi column text file with one constraint on each line. A
line starts with a one- or two-letter command, followed by multiple values that specify the addressed nucleotides,
the loop context restriction, and, for soft constraints, the strength of the constraint in kcal/mol. The syntax is as

follows:

Fiok [TYPE] [ORIENTATION] # Force nucleotides i...i+k-1 to be paired
Fijk [TYPE] # Force helix of size k starting with (i,j) to be formed
Pio0k [TYPE] # Prohibit nucleotides i...i+k-1 to be paired

Pijk [TYPE] # Prohibit pairs (i,j),...,(i+k-1,j-k+1)

P i-j k-1 [TYPE] # Prohibit pairing between two ranges

Cio0k [TYPE] # Nucleotides i,...,i+k-1 must appear in context TYPE
Cijk # Remove pairs conflicting with (i,j),...,(i+k-1,j-k+1)
EiOke # Add pseudo-energy e to nucleotides i...i+k-1

Eijke # Add pseudo-energy e to pairs (i,j),...,(i+k-1,j-k+1)
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with

[TYPE]
[ORIENTATION]

{E,H I, i, M, m, A}
{0, D}

* Prepare a commands file test.constraints that forces the first 5 nucleotides to pair and the following 3
nucleotides to stay unpaired as part of a multi-branch loop:

F105
C603M

* Use the randseq program to generate multiple sequences and compute the MFE structure for each under
the constraints prepared earlier:

[$ randseq -n 20 | RNAfold --commands test.constraints J

Inspect the output to assure yourself that hte commands have been applied

A few much more sophisticated constraints will be discussed below.

SHAPE directed RNA folding

In order to further improve the quality of secondary structure predictions, mapping experiments like SHAPE (se-
lective 2’-hydroxyl acylation analyzed by primer extension) can be used to exerimentally determine the pairing
status for each nucleotide. In addition to thermodynamic based secondary structure predictions, RNAfold supports
the incorporation of this additional experimental data as soft constraints.

If you want to use SHAPE data to guide the folding process, please make sure that your experimental data is present
in a text file, where each line stores three white space separated columns containing the position, the abbreviation
and the normalized SHAPE reactivity for a certain nucleotide.

71 C 0.035
72 G 0.909
73 C 0.224
74 C 0.529
75 A 1.475

The second column, which holds the nucleotide abbreviation, is optional. If it is present, the data will be used to
perform a cross check against the provided input sequence. Missing SHAPE reactivities for certain positions can
be indicated by omitting the reactivity column or the whole line. Negative reactivities will be treated as missing.
Once the SHAPE file is ready, it can be used to constrain folding:

[$ RNAfold --shape=rna.shape --shapeMethod=D < rna.seq }

A small compilation of reference data taken from Hajdin ez al. [2013] is available online https://weeks.chem.unc.
edu/data-files/ShapeKnots_DATA.zip. However, the included reference structures are only available in connect
(.ct) format and require conversion into dot-bracket notation to compare them against predicted structures with
RNAfold. Furthermore, the normalized SHAPE data is available as Excel spreadsheet and also requires some pre-
processing to make it available for RNAfold.
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Adding ligand interactions

RNA molecules are known to interact with other molecules, such as additional RNAs, proteins, or other small ligand
molecules. Some interactions with small ligands that take place in loops of an RNA structure can be modeled in
terms of soft constraints. However, to stay compatible with the recursive decomposition scheme for secondary
structures they are limited to the unpaired nucleotides of hairpins and internal loops.

The RNAlib library of the ViennaRNA Package implements a most general form of constraints capability. How-
ever, the available programs do not allow for a full access to the implemented features. Nevertheless, RNAfold
provides a convenience option that allows to easily include ligand binding to hairpin- or interior-loop like aptamer
motifs. For that purpose, a user needs only to provide motif and a binding free energy.

Consider the following example file theo. fa for a theophylline triggered riboswitch with the sequence:

>theo-switch
GGUGAUACCAGAUUUCGCGAAAAAUCCCUUGGCAGCACCUCGCACAUCUUGUUGUC
UGAUUAUUGAUUUUUCGCGAAACCAUUUGAUCAUAUGACAAGAUUGAG

The theopylline aptamer structure has been actively researched during the last two decades.
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Although the actual aptamer part (marked in blue) is not a simple interior loop, it can still be modeled as such. It
consists of two delimiting base pairs (G,C) at the 5’ site, and another (G,C) at its 3” end. That is already enough
to satisfy the requirements for the --motif option of RNAfold. Together with the aptamer sequence motif, the
entire aptamer can be written down in dot-bracket form as:

GAUACCAG&CCCUUGGCAGC
.. (((&)...)))...)

Note here, that we separated the 5° and 3’ part from each other using the & character. This enables us to omit the
variable hairpin end of the aptamer from the specification in our model.

The only ingredient that is still missing is the actual stabilizing energy contribution induced by the ligand binding
into the aptamer pocket. But several experimental and computational studies have already determined dissociation
constants for this system. Jenison et al. [1994], for instance, determined a dissociation constant of Ky = 0.32uM
which, for standard reference concentration ¢ = 1mol/L, can be translated into a binding free energy

K
AG = RT -In ?d ~ —9.22 keal /mol
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Finally, we can compute the MFE structure for our example sequence

[$ RNAfold -v --motif "GAUACCAG&CCCUUGGCAGC, (...((((&)...)))...),-9.22" theo.fa }

Compare the predicted MFE structure with and without modeling the ligand interaction. You may also enable
partition function computation to compute base pair probabilities, the centroid structure and MEA structure to
investigate the effect of ligand binding on ensemble diversity.

G-quadruplexes

G-Quadruplexes are a common conformation found in G-rich sequences where four runs of consecutive G’s are
separated by three short sequence stretches.

GL _NII_ GL —le— GL _le— GL

They form local self-enclosed stacks of G-quartets bound together through 8 Hogsteen-Watson Crick bonds and
further stabilized by a metal ion (usually potassium).

L

Y

5I 5I 3I 1
parallel anti-parallel mixed

To acknowledge the competition of regular secondary structure and G-quadruplex formation, the ViennaRNA
Package implements an extension to the default recursion scheme. For that purpose, G-quadruplexes are sim-
ply considered a different type of substructure that may be incorporated like any other substructure. The free
energy of a particular G-quadruplex at temperature 7' is determined by a simple energy model

E(L, ltota T) = (Z(t) . (L — 1) -+ b(T) . ln(ltot — 2)

that only considers the number of stacked layers L and the total size of the three linker sequences l;,; = I1 + 12+ 13
connecting the G runs. Linker sequence and assymetry effects as well as relative strand orientations (parallel,
anti-parallel or mixed) are entirely neglected in this model. The free energy parameters

a(T)=H,+ TS,
and
b(T)=H,+ TS,

have been determined from experimental UV-melting data taken from Zhang et al. [2011].

RNAfold allows one to activate the G-quadruplex implementation by simply providing the -g switch. G-
quadruplexes are then taken into account for MFE and equilibrium probability computations.

$ echo "GGCUGGUGAUUGGAAGGGAGGGAGGUGGCCAGCC" | RNAfold -g -p
GGCUGGUGAUUGGAAGGGAGGGAGGUGGCCAGCC

(CCCCCannnnnnnn. .o+ . +1)))))) (-21.39)
CCCCCCennnnnnnn. Coveennnn ))))))) [-21.83]
(CCCCCannnnnnnn. .o+ H+.4+14)))))) {-21.39 d=0.04}

frequency of mfe structure in ensemble 0.491118; ensemble diversity 0.08

The resulting structure layout and dot plot PostScript files depict the prediced G-quadruplexes as hairpin-like
loops with additional bonds between the interacting G’s, and green triangles where the color intensity encodes the
G-quadruplex probability, respectively. Have a closer look at the actual G-quadruplex probabilities by opening the
dot plot PostScript file with a text browser again.
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Repeat the above analysis for other RNA sequences that might contain and form a G-quadruplex, e.g. the human
telomerase RNA component hTERC:

>hTERC
AGAGAGUGACUCUCACGAGAGCCGCGAGAGUCAGCUUGGCCAAUCCGUGCGGUCGG
CGGCCGCUCCCUUUAUAAGCCGACUCGCCCGGCAGCGCACCGGGUUGCGGAGGGUG
GGCCUGGGAGGGGUGGUGGCCAUUUUUUGUCUAACCCUAACUGAGAAGGGCGUAGG
CGCCGUGCUUUUGCUCCCCGCGCGCUGUUUUUCUCGCUGACUUUCAGCGGGCGGAA
AAGCCUCGGCCUGCCGCCUUCCACCGUUCAUUCUAGAGCAAACAAAAAAUGUCAGC
UGCUGGCCCGUUCGCCCCUCCCGGGGACCUGCGGCGGGUCGCCUGCCCAGCCCCCG
AACCCCGCCUGGAGGCCGCGGUCGGCCCGGGGCUUCUCCGGAGGCACCCACUGCCA
CCGCGAAGAGUUGGGCUCUGUCAGCCGCGGGUCUCUCGGGGGCGAGGGCGAGGUUC
AGGCCUUUCAGGCCGCAGGAAGAGGAACGGAGCGAGUCCCCGCGCGCGGCGCGAUU
CCCUGAGCUGUGGGACGUGCACCCAGGACUCGGCUCACACAUGC

SSB protein interaction

Similar to the ligand interactions discussed above, a single strand binding (SSB) protein might bind to consecutively
unpaired sequence motifs. To model such interactions the ViennaRNA Package implements yet another extension
to the folding grammar to cover all cases a protein may bind to, termed unstructured domains. This is in contrast
to the ligand binding example above that uses the soft constraints implementation, and is, therefore, restricted to
unpaired hairpin- and interior-loops.

To make use of this implementation in RNAfold one has to resort to command files again. Here, an unstructured
domain (UD) can be easily added using the following syntax:

[UD m e [LOOP] ]

where m is the sequence motif the protein binds to in [UPAC format, e is the binding free energy in kcal /mol, and
the optional LOOP specifier allows for restricting the binding to particular loop types, e.g. M for multibranch loops,
or E for the exterior loop. See the syntax for command files above for an overview of all loop types available.
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As an example, consider the protein binding experiment taken from Forties and Bundschuh [2010]. Here, the
authors investigate a hypothetical unspecific RNA binding protein with a footprint of 6 nt and a binding energy of
AG = —10 kcal/mol at 1 M. With T' = 37°C' and

AG:RT&HE
c

this translates into a dissociation constant of

K4 = exp(AG/RT) = 8.983267433 - 105,

Hence, the binding energies at 50 nM, 100 nM, 400 nM, and 1 pM are 0.36 kcal/mol, —0.07 kcal/mol,
—0.92 kcal/mol, and —1.49 kcal /mol, respectively.

The RNA sequence file forties_bundschuh. fa for this experiment is:

>forties_bundschuh

CGCUAUAAACCCCAAAAAAAAAAAAGGGGAAAAUAGCG

which yields the following MFE structure

To model the protein binding for this example with RNAfold we require a commands file for each of the concen-
trations in question. Thus, one simply creates text files with a single line content:

[UD NNNNNN e

1

where e is the binding free energy at this specific protein concentration as computed above. Note here, that we use
NNNNNN as sequence motif that is bound by the protein to acknowledge the unspecific interaction between protein
and RNA. Finally, RNAfold is executed to compute equilibrium base pairing and per-nucleotide protein binding

probabilities .. code:

[$ RNAfold -p --commands forties_50nM.txt forties_bundschuh.fa

and the produced probability dot plot can be inspected.
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As you can see, the dot plot is augmented with an additional linear array of blue squares along each side that
depicts the probability that the respective nucleotide is bound by the protein. Now, repeat the computations for
different protein concentrations and compare the probabilities computed with the unstructured domain feature of
the ViennaRNA Package with those in Fig. 3(a) of the publication.

Note, that RNAfold allows for an unlimited number of different proteins specified in the commands file. This easily
allows one to model RNA-protein binding interaction within a relatively complex solution of different competing
proteins.

Change other model settings

RNAfold also allows for many other changes of the implemented Nearest Neighbor model. For instance, you can
explicitly prohibit (G, U) pairs, change the temperature that is used for evaluation of the free energy of particular
loops, select a different dangling-end energy model or load a different set of free energy parameters, e.g. for DNA
or parameters derived from computational optimizations.

See the man pages of RNAfold for a complete overview of all available options and command line switches.
Additional energy parameter collections are distributed together with the ViennaRNA Package as part of the
contents of the misc/ directory, and are typically installed in prefix/share/ViennaRNA, where prefix is the
path that was used as installation prefix, e.g. $HOME/Tutorial /Progs/VRP or /usr when installed globally using
a package manager.

3.1.2 The Program RNApvmin

Introduction

The program RNApvmin reads a RNA sequence from stdin and uses an iterative minimization process to calculate
a perturbation vector that minimizes the discripancies between predicted pairing probabilites and observed pairing
probabilities (deduced from given shape reactivities) [Washietl ef al., 2012]. The experimental SHAPE data has
to be present in the file format described above. The application will write the calculated vector of perturbation
energies to stdout, while the progress of the minimization process is written to stderr. The resulting perturbation
vector can be interpreted directly and gives usefull insights into the discrepancies between thermodynamic predic-
tion and experimentally determined pairing status. In addition the perturbation energies can be used to constrain
folding with RNAfold:

$ RNApvmin rna.shape < rna.seq >vector.csv
$ RNAfold --shape=vector.csv --shapeMethod=W < rna.seq

The perturbation vector file uses the same file format as the SHAPE data file. Instead of SHAPE reactivities the raw
perturbation energies will be storred in the last column. Since the energy model is only adjusted when necessary,
the calculated perturbation energies may be used for the interpretation of the secondary structure prediction, since
they indicate which positions require major energy model adjustments in order to yield a prediction result close to
the experimental data. High perturbation energies for just a few nucleotides may indicate the occurrence of features,
which are not explicitly handled by the energy model, such as posttranscriptional modifications and intermolecular
interactions.

3.1.3 The Program RNAsubopt

Introduction

By default, RNAsubopt calculates all suboptimal secondary structures within a given energy range above the MFE
structure [Wuchty et al., 1999].

Note: Be careful, the number of structures returned grows exponentially with both sequence length and energy
range.
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Suboptimal folding

* Generate all suboptimal structures within a certain energy range from the MFE specified by the -e option:

($ RNAsubopt -e 1 -s < test.seq
CUACGGCGCGGCGCCCUUGGCGA  -500 100
........... (CCC...0))). -5.00

p000llllocod)DDocooccoa -4.80
CCC.CCCC w0200 ... -4.20
GGG D)D)). 4010

The text output shows an energy sorted list (option -s) of all secondary structures within 1~kcal/mol of the MFE
structure. Our sequence actually has a ground state structure (-5.70) and three structures within 1~kcal/mol range.

MFE folding alone gives no indication that there are actually a number of plausible structures. Remember that
RNAsubopt cannot automatically plot structures, therefore you can use the tool RNAplot. Note that you can’t
simply pipe the output of RNAsubopt to RNAplot using:

[$ RNAsubopt < test.seq | RNAplot ]

You need to manually create a file for each structure you want to plot. Here, for example we created a new file
named suboptstructure. txt:

> suboptstructure-4.20
CUACGGCGCGGCGCCCUUGGCGA
CCCCCCC--202)-90 ...

The fasta header is optional, but useful (without it the outputfile will be named rna.ps).

The next two lines contain the sequence and the suboptimal structure you want to plot; in this case we plotted the
structure with the folding energy of -4.20.

Then plot it with

[$ RNAplot < suboptstructure.txt }

Note that the number of suboptimal structures grows exponentially with sequence length and therefore this approach
is only tractable for sequences with less than 100 nt. To keep the number of suboptimal structures manageable the
option --noLP can be used, forcing RNAsubopt to produce only structures without isolated base pairs. While
RNAsubopt produces all structures within an energy range, mfold produces only a few, hopefully representative,
structures. Try folding the sequence on the mfold server at http://mfold.rna.albany.edu/?q=mfold.

Sometimes you want to get information about unusual properties of the Boltzmann ensemble (the sum of all RNA
structures possible) for which no specialized program exists. For example you want to know all fractions of a
bacterial mRNA in the Boltzmann ensemble where the Shine-Dalgarno (SD) sequence is unpaired. If the SD
sequence is concealed by secondary structure the translation efficiency is reduced.

In such cases you can resort to drawing a representative sample of structures from the Boltzmann ensemble by
using the option -p. Now you can simply count how many structures in the sample possess the feature you are
looking for. This number divided by the size of your sample gives you the desired fraction.

The following example calculates the fraction of structures in the ensemble that have bases 6 to 8 unpaired.
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Sampling the Boltzmann Ensemble
RNAsubopt also implements a statisctical sampling algorithm to draw secondary structures from the ensemble
according to their equilibrium probability [Ding and Lawrence, 2003]:

* Draw a sample of size 10,000 from the Boltzmann ensemble

* Calculate the desired property, e.g. by using a perl script:

$ RNAsubopt -p 10000 < test.seq > tt

$ perl -nle '$h++ if substr($_,5,3) eq "...";
END {print $h/$.}' tt
0.391960803919608

A far better way to calculate this property is to use RNAfold -p to get the ensemble free energy, which is related
to the partition function via ' = — RT In(Q), for the unconstrained (F,) and the constrained case (F,), where the
three bases are not allowed to form base pairs (use option -C), and evaluate p. = exp((F,, — F.)/RT) to get the
desired probability.

So let’s do the calculation using RNAfold:

$ RNAfold -p

Input string (upper or lower case); @ to quit

N P IO« PSS S o J R A
CUACGGCGCGGCGCCCUUGGCGA

length = 23
CUACGGCGCGGCGCCCUUGGCGA

........... CCCC...00M.

minimum free energy = -5.00 kcal/mol

S TR ST R Nl 3

free energy of ensemble = -5.72 kcal/mol

....................... { 0.00 d=4.66}

frequency of mfe structure in ensemble 0.311796; ensemble diversity 6.36

J

Now we have calculated the free ensemble energy of the ensemble over all structures F,, in the next step we have
to calculate it for the structures using a constraint (F.).

Following notation has to be used for defining the constraint:
* | : paired with another base
* . : no constraint at all
* x : base must not pair
e <: base i is paired with a base j<i
* >: base i is paired with a base j>i
» matching brackets ( ): base i pairs base j

So our constraint should look like this:

Next call the application with following command and provide the sequence and constraint we just created:

[$ RNAfold -p -C

The output should look like this:

length = 23
CUACGGCGCGGCGCCCUUGGCGA
........... ..M.

(continues on next page)
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(continued from previous page)

minimum free energy = -5.00 kcal/mol
........... ..M.
free energy of ensemble = -5.14 kcal/mol

........... CCCC...0))). { -5.00 d=0.42}

frequency of mfe structure in ensemble 0.792925; ensemble diversity 0.79

Afterwards evaluate the desired probability according to the formula given before e.g. with a simple perl script:

[$ perl -e 'print exp(-(5.72-5.14)/(0.00198%310.15))."\n""' }

You can see that there is a slight difference between the RNAsubopt run with 10,000 samples and the RNAfold run
including all structures.

3.2 Consensus Structure Prediction

Consensus structures can be predicted by a modified version of the secondary structure prediction algorithm that
takes as input a set of aligned sequences instead of a single sequence.

Sequence co-variations are a direct consequence of RNA base pairing rules and can be deduced to alignments.
RNA helices normally contain only 6 out of the 16 possible combinations: the Watson-Crick pairs GC, CG, AU, UA,
and the somewhat weaker wobble pairs GU and UG. Mutations in helical regions therefore have to be correlated. In
particular we often find compensatory mutations where a mutation on one side of the helix is compensated by a
second mutation on the other side, e.g. a CG pair changes into a UA pair. Mutations where only one pairing partner
changes (such as CG to UG are termed consistent mutations.

The energy function consists of the mean energy averaged over the sequences, plus a covariance term that favors
pairs with consistent and compensatory mutations and penalizes pairs that cannot be formed by all structures. For
details see Hofacker et al. [2002] and Bernhart et al. [2008].

3.2.1 The Program RNAalifold
Introduction

RNAalifold generalizes the folding algorithm for multiple sequence alignments (MSA), treating the entire align-
ment as a single generalized sequence. To assign an energy to a structure on such a generalized sequence, the
energy is simply averaged over all sequences in the alignment. This average energy is augmented by a covariance
term, that assigns a bonus or penalty to every possible base pair (¢, j) based on the sequence variation in columns
1 and j of the alignment.

Compensatory mutations are a strong indication of structural conservation, while consistent mutations provide a
weaker signal. The covariance term used by RNAalifold therefore assigns a bonus of 1 kcal/mol to each consistent
and 2 kcal/mol for each compensatory mutation. Sequences that cannot form a standard base pair incur a penalty of
—1 kcal/mol. Thus, for every possible consensus pair between two columns ¢ and j of the alignment a covariance
score C;; is computed by counting the fraction of sequence pairs exhibiting consistent and compensatory mutations,
as well as the fraction of sequences that are inconsistent with the pair. The weight of the covariance term relative
to the normal energy function, as well as the penalty for inconsistent mutations can be changed via command line
parameters.

Apart from the covariance term, the folding algorithm in RNAalifold is essentially the same as for single sequence
folding. In particular, folding an alignment containing just one sequence will give the same result as single sequence
folding using RNAfold. For N sequences of length n the required CPU time scales as O(N -n?+n?3) while memory
requirements grow as the square of the sequence length. Thus RNAalifold is in general faster than folding each
sequence individually. The main advantage, however, is that the accuracy of consensus structure predictions is
generally much higher than for single sequence folding, where typically only between 40% and 70% of the base
pairs are predicted correctly.
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Apart from prediction of MFE structures RNAalifold also implements an algorithm to compute the partition func-
tion over all possible (consensus) structures and the thermodynamic equilibrium probability for each possible pair.
These base pairing probabilities are useful to see structural alternatives, and to distinguish well defined regions,
where the predicted structure is most likely correct, from ambiguous regions.

As a first example we’ll produce a consensus structure prediction for the following four tRNA sequences.

$ cat > four.seq

>M10740 Yeast-PHE
GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUUUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCA
>K00349 Drosophila-PHE
GCCGAAAUAGCUCAGUUGGGAGAGCGUUAGACUGAAGAUCUAAAGGUCCCCGGUUCAAUCCCGGGUUUCGGCA
>K00283 Halobacterium volcanii Lys-tRNA-1
GGGCCGGUAGCUCAUUUAGGCAGAGCGUCUGACUCUUAAUCAGACGGUCGCGUGUUCGAAUCGCGUCCGGCCCA
>AF346993
CAGAGUGUAGCUUAACACAAAGCACCCAACUUACACUUAGGAGAUUUCAACUUAACUUGACCGCUCUGA

J

RNAalifolduses aligned sequences as input. Thus, our first step will be to align the sequences. We use clustalw2
in this example, since it’s one of the most widely used alignment programs and has been shown to work well
on structural RNAs. Other alignment programs can be used (including programs that attempt to do structural
alignment of RNAs), but for this example the resulting multiple sequence alignment should be in Clustal format.
Get clustalw2 and install it as you have done it with the other packages: http://www.clustal.org/clustal2.

Consensus Structure from related Sequences

 Prepare a sequence file (use file four . seq and copy it to your working directory)
* Align the sequences

* Compute the consensus structure from the alignment

* Inspect the output files alifold.out, alirna.ps, alidot.ps

* For comparison fold the sequences individually using RNAfold

[$ clustalw2 four.seq > four.out }

Clustalw?2 creates two more output files, four.aln and four.dnd. For RNAalifold you need the .aln file.

$ RNAalifold -p four.aln
$ RNAfold -p < four.seq

RNAalifold output:
__GCCGAUGUAGCUCAGUUGGG_AGAGCGCCAGACUGAAAAUCAGAAGGUCCCGUGUUCAAUCCACGGAUCCGGCA__
< CCCCCCC. e e e 2))) . CCCCCa et DDDDD FI. CCCCCannn D)) ...
minimum free energy = -15.12 kcal/mol (-13.70 + -1.43)

A C T (e 2))) . CCCCCannnnn. D)) ... CCCCCannn D)) ...

free energy of ensemble = -15.75 kcal/mol
frequency of mfe structure in ensemble 0.361603

< CCCCCCC e e annn 2))) . CCCCCa et DDD DD FIF CCCCCannn D)I)3)))))) ... -15.20
~{-13.70 + -1.50}

RNAfold output:

>M10740 Yeast-PHE
GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUUUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCA

(et CCCC. CCCCCC. . CCCCennnne 333)..33333)..333)..33)))))) . (-21.60)
CCCCCCCLe v ey - £, CCCC CCCCCC . CCCC e aaeee 333)..333333..33333,033)))) . [-23.20]
CCCCCCCCennnnnnn CCC CCCCCC . CCCCennnnne 333)..333333..33)...333)3))). {-20.00 d=9.

(continues on next page)
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(continued from previous page)
63}

frequency of mfe structure in ensemble 0.0744065; ensemble diversity 15.35
>K00349 Drosophila-PHE

[...]

The output contains a consensus sequence and the consensus structure in dot-bracket notation. The consensus
structure has an energy of —15.12 kcal/mol, which in turn consists of the average free energy of the structure
—13.70 kcal/mol and the covariance term —1.43 kcal/mol. The strongly negative covariance term shows that there
must be a fair number of consistent and compensatory mutations, but in contrast to the average free energy it’s not
meaningful in the biophysical sense.

Compare the predicted consensus structure with the structures predicted for the individual sequences using
RNAfold. How often is the correct ““clover-leaf” shape predicted?

For better visualization, a structure annotated alignment or color annotated structure drawing can be generated by
using the --aln and --color options of RNAalifold.

$ RNAalifold --color --aln four.aln
$ gv aln.ps &
$ gv alirna.ps &

RNAalifold Output Files

Content of the alifold.out file:

4 sequence; length of alignment 78
alifold output

6 72 0 99.8% 0.007 GC:2 GU:1 AU:1
33 43 0 98.9% 0.033 GC:2 GU:1 AU:1
31 45 0 99.0% 0.030 CG:3 UA:1

15 25 0 98.9% 0.045 CG:3 UA:1

5 73 1 99.7% 0.008 CG:2 GC:1

13 27 0 99.1% 0.042 CG:4

14 26 0 99.1% 0.042 UA:4

4 74 1 99.5% 0.015 CG:3

[oaal

The last output file produced by RNAalifold -p, named alifold.out, is a plain text file with detailed informa-
tion on all plausible base pairs sorted by the likelihood of the pair. In the example above we see that the pair (6, 72)
has no inconsistent sequences, is predicted almost with probability 1, and occurs as a GC pair in two sequences, a
GU pair in one, and a AU pair in another.

RNAalifold automatically produces a drawing of the consensus structure in Postscript format and writes it to the
file alirna.ps. In the structure graph consistent and compensatory mutations are marked by a circle around the
variable base(s), i.e. pairs where one pairing partner is encircled exhibit consistent mutations, whereas pairs sup-
ported by compensatory mutations have both bases marked. Pairs that cannot be formed by some of the sequences
are shown gray instead of black.

The structure layout and dotplot files alirna.ps and alidot.ps should look as follows:
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In the example given, many pairs show such inconsistencies. This is because one of the sequences (AF346993) is
not aligned well by clustalw.

Note: Subsequent calls to RNAalifold will overwrite any existing output alirna.ps (alidot.ps, alifold.
out) files in the current directory. Be sure to rename any files you want to keep.

Structure predictions for the individual sequences

The consensus structure computed by RNAalifold will contain only pairs that can be formed by most of the
sequences. The structures of the individual sequences will typically have additional base pairs that are not part of
the consensus structure. Moreover, ncRNA may exhibit a highly conserved core structure while other regions are
more variable. It may therefore be desirable to produce structure predictions for one particular sequence, while
still using covariance information from other sequences.

This can be accomplished by first computing the consensus structure for all sequences using RNAalifold, then
folding individual sequences using RNAfold -C with the consensus structure as a constraint. In constraint folding
mode RNAfold -Callows only base pairs to form which are compatible with the constraint structure. This resulting
structure typically contains most of the constraint (the consensus structure) plus some additional pairs that are
specific for this sequence.

The refold.pl script removes gaps and maps the consensus structure to each individual sequence.

$ RNAalifold RNaseP.aln > RNaseP.alifold

$ gv alirna.ps

$ refold.pl RNaseP.aln RNaseP.alifold | head -3 > RNaseP.cfold
$ RNAfold -C --noLP < RNaseP.cfold > RNaseP.refold

$ gv E-coli_ss.ps

If you compare the refolded structure (E-coli_ss.ps) with the structure you get by simply folding the E.coli
sequence in the RNaseP. seq file (RNAfold --noLP) you find a clear rearrangement.

In cases where constrained folding results in a structure that is very different from the consensus, or if the energy
from constrained folding is much worse than from unconstrained folding, this may indicate that the sequence in
question does not really share a common structure with the rest of the alignment or is misaligned. One should then
either remove or re-align that sequence and recompute the consensus structure.

Note: Note that since RNase P forms sizable pseudo-knots, a perfect prediction is impossible in this case.
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3.3 RNA-RNA interaction

A common problem is the prediction of binding sites between two RNAs, as in the case of miRNA-mRNA inter-
actions. Following tools of the ViennaRNA Package can be used to calculate base pairing probabilities.

3.3.1 The Program RNAcofold

Introduction

RNAcofold works much like RNAfold but uses two RNA sequences as input which are then allowed to form a
dimer structure. In the input the two RNA sequences should be concatenated using the & character as separator.
As in RNAfold the -p option can be used to compute partition function and base pairing probabilities.

Since dimer formation is concentration dependent, RNAcofold can be used to compute equilibrium concentrations
for all five monomer and (homo/hetero)-dimer species, given input concentrations for the monomers (see the man
page for details).

Two Sequences one Structure

* Prepare a sequence file (t. seq) for input that looks like this:

>t
GCGCUUCGCCGCGCGCCAGCGCUUCGCCGCGCGCA

¢ Compute the MFE and the ensemble properties

* Look at the generated PostScript files t_ss.ps and t_dp.ps

$ RNAcofold -p < t.seq

>t

GCGCUUCGCCGCGCGCCAGCGCUUCGCCGCGCGCA

CCCC. . CC. . CCCC 282002000000 ... (-17.70)

CCCC - {G - (G5 -8)))--3)4,20))),, - [-18.26]
frequency of mfe structure in ensemble 0.401754 , delta G binding= -3.95
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Table 1: Secondary Structure and Dot Plot

1
GCGCUUCGCCGCGCGCCGCGCUUCGCCGCGCGCA
N
oo

Ao,

¥0D0D0H00DONNODODDIDIHOHIOOINNDDID

VoD oBODHO2DONNODIDIDIDODODI2DINNODDD

GCGCUUCGCCGCGCGCC/GCGCUUCGCCGCGCGCA

In the dot plot a cross marks the chain break between the two concatenated sequences.

Concentration Dependency

Cofolding is an intermolecular process, therefore whether duplex formation will actually occur is concentration
dependent. Trivially, if one of the molecules is not present, no dimers are going to be formed. The partition
functions of the molecules give us the equilibrium constants:

[AB]  Zag

Rar =48] = Zazs

with these and mass conservation, the equilibrium concentration of homodimers, heterodimers and monomers can
be computed in dependence of the start concentrations of the two molecules.

This is most easily done by creating a file with the initial concentrations of molecules A and B in two columns:

fa_1]([mol/1]) [b_1]([mol/1]1)
la_2]([mol/1]) [b_2]([mol/1])

[...]

[a_n]([mol/1]) & [b_n]([mol/1])

* Prepare a concentration file for input with this little perl script:
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[$ perl -e '$c=1e-07; do {print "$c\t$c\n"; $c*=1.71;} while $c<0.2' > concfile ]

This script creates a file displaying values from 1e-07 to just below 0.2, with 1.71-fold steps in between. For
convenience, concentration of molecule A is the same as concentration of molecule B in each row. This will
facilitate visualization of the results.

» Compute the MFE, the ensemble properties and the concentration dependency of hybridization:

[$ RNAcofold -f concfile < t.seq > cofold.out }

* Look at the generated output with:

£$ less cofold.out }

which should be similar to:

-

[...]

Free Energies:

AB AA BB A B

-18.261023 -17.562553 -18.274376 -7.017902 -7.290237

Initial concentrations relative Equilibrium concentrations

A B AB AA BB o
—A B

le-07 le-07 0.00003 0.00002 0.00002 o
—0.49994 0.49993

[...]

L

The five different free energies were printed out first, followed by a list of all the equilibrium concentrations, where
the first two columns denote the initial (absolute) concentrations of molecules A and B, respectively. The next five
columns denote the equilibrium concentrations of dimers and monomers, relative to the total particle number.

Note: The concentrations don’t add up to one, except in the case where no dimers are built — if you want to know
the fraction of particles in a dimer, you have to take the relative dimer concentrations times 2.

Since relative concentrations of species depend on two independent values - initial concentration of A as well as
initial concentration of B - it is not trivial to visualize the results. For this reason we used the same concentration
for A and for B. Another possibility would be to keep the initial concentration of one molecule constant. As an
example we show the following plot of t.seq.

Now we use some commandline tools to render our plot. We use tail -n +11 to show all lines starting with line
11 (1-10 are cut) and pipe it into an awk command, which prints every column but the first from our input. This is
then piped to xmgrace. With -1log x -nxy - we tell it to plot the x axis in logarithmic scale and to read data file
inXYI1Y2... format.

$ tail -n +11 cofold.out | awk '{print $2, $3, $4, $5, $6, $7}' | xmgrace -log x -nxy.

=
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Concentration Dependency Plot
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input concentration [mol/1]

Since the two sequences are almost identical, the monomer and homo-dimer concentrations behave very similarly.
In this example, at a concentration of about 1 mmol 50% of the molecule is still in monomer form.

3.3.2 The Program RNAduplex

Introduction
If the sequences are very long (many kb) RNAcofold is too slow to be useful. The RNAduplex program is a

fast alternative, that works by predicting only intermolecular base pairs. It’s almost as fast as simple sequence
alignment, but much more accurate than a BLAST search.

The example below searches the 3° UTR of an mRNA for a miRNA binding site.

Binding site prediction with RNAduplex

The file duplex. seq contains the 3’UTR of NM_024615 and the microRNA mir-145.

$ RNAduplex < duplex.seq

>NM_024615

>hsa-miR-145

- CCCCC CCCL . - CCraaaeaea@22223222000 - 1,19

34,57 (-21.90)

Most favorable binding has an interaction energy of -21.90 kcal/mol and pairs up on positions 34-57 of the UTR
with positions 1-22 of the miRNA.

RNAduplex can also produce alternative binding sites, e.g. running RNAduplex -e 10 would list all binding sites
within 10 kcal/mol of the best one.

Since RNAduplex forms only intermolecular pairs, it neglects the competition between intramolecular folding
and hybridization. Thus, it is recommended to use RNAduplex as a pre-filter and analyse good RNAduplex hits
additionally with RNAcofold or RNAup. Using the example above, running RNAup will yield:
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Binding site prediction with RNAup

$ RNAup -b < duplex.seq

>NM_024615

>hsa-miR-145

CCCCCCCeIINIII) 50,56 : 1,7  (-8.41 = -9.50 + 0.69 + 0.40)
GCUGGAU&GUCCAGU

RNAup output in file: hsa-miR-145_NM_024615_w25_ul.out

The free energy of the duplex is -9.50 kcal/mol and shows a discrepancy to the structure and energy value computed
by RNAduplex (differences may arise from the fact that RNAup computes partition functions rather than optimal
structures).

However, the total free energy of binding is less favorable (-8.41 kcal/mol), since it includes the energetic penalty
for opening the binding site on the mRNA (0.69 kcal/mol) and miRNA (0.40 kcal/mol). The -b option includes
the probability of unpaired regions in both RNAs.

You can also run RNAcofold on the example to see the complete structure after hybridization (neither RNAduplex
nor RNAup produce structure drawings). Note however, that the input format for RNAcofold is different. An input
file suitable for RNAcofold has to be created from the duplex. seq file first (use any text editor).

As a more difficult example, let’s look at the interaction of the bacterial smallRNA RybB and its target mRNA
ompN. First we’ll try predicting the binding site using RNAduplex:

$ RNAduplex < RybB.seq

>RybB

>ompN

- CCCCL . CCCCCC- (e + - (e - e e - - e w - L. - ceceeeeeeec. s cecceccs
22)33)-332033) 0000 - - DDRD IS DISD FDD DD D DI DD D IR 23))-22))2)))))-00)).
5,79 : 80,164 (-34.60)

Note, that the predicted structure spans almost the full length of the RybB small RNA. Compare the predicted
interaction to the structures predicted for RybB and ompN alone, and ask yourself whether the predicted interaction
is indeed plausible.

Below the structure of ompN on the left and RybB on the right side. The respective binding regions predicted by
RNAduplex are marked in red:
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GCCAC----- TGCTTTTCTTTGATGTCCCCATTTT-GTGGA----~--~ GC-CCATCAACCCCGCCATTTCGGTT---CAAG-
—GTTGGTGGGTTTTTT

[ LEEE TEEEEE Fr FEEEE FEE LEEE e 1 [T LEEE T o
<[l Il -40.30

AGGTCAAACAACGGC-AGAAACAATATT--TAAAGTCGCCGCACACGACGCGGTCGTCGGT -
—CGTCTCGGCCCTACTGTTCACGGTTATGAAAAGAAACC-3'

J

Compare the RNAduplex prediction with the interaction predicted by RNAcofold, RNAup and the handcrafted
prediction you see above.
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3.4 Plotting Structures

3.4.1 The Program RNAplot
Introduction

You can manually add additional annotation to structure drawings using the RNAplot program (for information
see its man page). Here’s a somewhat complicated example:

$ RNAfold 5S.seq > 5S.fold
$ RNAplot --pre "76 107 82 102 GREEN BFmark 44 49 0.8 0.8 0.8 Fomark \

1 15 8 RED omark 80 cmark 80 -0.23 -1.2 (pos80) Label 90 95 BLUE Fomark" < 5S.fold
$ gv 5S_ss.ps

3.4. Plotting Structures a1
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PostScript macros

RNAplot is a very useful tool to color structure layout plots. The --pre tag adds PostScript code required to color
distinct regions of your molecule. There are some predefined statements with different options for annotations
listed below:

Command Description

i cmark draws circle around base i

i j c gmark draw basepair i,j with ¢ counter examples in grey

i j 1w rgb omark stroke segment i. . .j with linewidth 1w and color (rgb)

i j rgb Fomark fill segment i...j with color (rgb)

i j k 1 rgb BFmark fill block between pairs i,j and k,1 with color (rgb)

i dx dy (text) Label adds a textlabel with an offset dx and dy relative to base i

Predefined color options are BLACK, RED, GREEN, BLUE, WHITE but you can also replace the value to some
standard RGB code (e.g. 0 5 8 for lightblue).

To simply add the annotation macros to the PostScript file without any actual annotation you can use the follow-
ing program call

[$ RNAplot --pre "" < 5S.fold }

If you now open the structure layout file 5S_ss.ps with a text editor you’ll see the additional macros for cmark,
omark, etc. along with some show synopsis on how to use them. Actual annotations can then be added between
the lines:

[% Start Annotations }
and:
[% End Annotations }

Here, you simply need to add the same string of commands you would provide through the --pre option of
RNAplot.
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3.5 RNA Design

3.5.1 The Program RNAinverse
Introduction
RNAinverse searches for sequences folding into a predefined structure, thereby inverting the folding algorithm.

Input consists of the target structures (in dot-bracket notation) and a starting sequence, which is optional.

Lower case characters in the start sequence indicate fixed positions, i.e. they can be used to add sequence con-
straints. N’s in the starting sequence will be replaced by a random nucleotide. For each search the best sequence
found and its Hamming distance to the start sequence are printed to stdout. If the the search was unsuccessful a
structure distance to the target is appended.

By default the program stops as soon as it finds a sequence that has the target as MFE structure. The op-
tion -Fp switches RNAinverse to the partition function mode where the probability of the target structure
exp(—FE(S)/RT)/Z is maximized. This tends to produce sequences with a more well-defined structure.

This probability is written in dot-brackets after the found sequence and Hamming distance. With the option -R
you can specify how often the search should be repeated.

Sequence Design

* Prepare an input file inv.in containing the target structure and sequence constraints:

(CC.CCC- 202000
NNNgNNNNNNNNNNaNNN

* Design sequences using RNAinverse:

$ RNAinverse < inv.in
GGUgUUGGAUCCGAaACC 5

or design even more sequences with:

($ RNAinverse -R5 -Fp < inv.in
GGUgUGAACCCUCGaACC 5
GGCgCCCUUUUGGGaGCC 12 (0.967418)
CUCgAUCUCACGAUaGGG 6
GGCgCCCGAAAGGGaGCC 13 (0.967548)
GUUgAGCCCAUGCUaAGC 6
GGCgCCCUUAUGGGaGCC 10 (0.967418)
CGGgUGUUGUGACAaCCG 5
GCGgGUCGAAAGGCaCGC 12 (0.925482)
GCCgUAUCCGGGUGaGGC 6
GGCgCCCUUUUGGGaGCC 13 (0.967418)

The output consists of the calculated sequence and the number of mutations needed to get the MFE-structure from
the start sequence (start sequence not shown). Additionaly, with the partition function folding (-Fp) set, the second
output is another refinement so that the ensemble preferes the MFE and folds into your given structure with a distinct
probability, shown in brackets.
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Other RNA design tools

Another useful program for inverse folding is RNA designer, see http://www.rnasoft.ca. RNA Designer takes
a secondary structure description as input and returns an RNA strand that is likely to fold in the given secondary
structure.

The sequence design application of the ViennaRNA Design Webservices, see http://nibiru.tbi.univie.
ac.at/rnadesign/index.html, uses a different approach, allowing for more than one secondary structure as input. For
more detail read the online Documentation and the next section of this tutorial.

3.5.2 The Program switch.pl

Introduction

The switch.pl script can be used to design bi-stable structures, i.e. structures with two almost equally good
foldings. For two given structures there are always a lot of sequences compatible with both structures. If both
structures are reasonably stable you can find sequences where both target structures have almost equal energy and
all other structures have much higher energies. Combined with RNAsubopt, barriers and treekin, this is a very
useful tool for designing RNA switches.

The input requires two structures in dot-bracket notation and additionally you can add a sequence. It is also possible
to calculate the switching function at two different temperatures with option -T and -T2.

Designing a Switch

Now we try to create an RNA switch using switch.pl [Flamm er al., 2001]. First we create our inputfile, then
invoke the program using ten optimization runs (-n 1) and do not allow lonely pairs. Write it out to switch.out

$ cat > switch.in
et D)) ... (Lt D)D)
(e e 2323230330000))) . ...

$ switch.pl -n 10 --nolP < switch.in > switch.out

switch.out should look similar like this, the first block represents our bi-stable structures in random order, the
second block shows the resulting sequences ordered by their score.

$ cat switch.out
GGGUGGACGUUUCGGUCCAUCCUUACGGACUGGGGCGUUUACCUAGUCC  0.9656
CAUUUGGCUUGUGUGUCGAAUGGCCCCGGUACGUAGGCUAAAUGUACCG .2319
GGGGGGUGCGUUCACACCCCUCAUUUGGUGUGGAUGUGCUUUCUACACU 1.1554
[...]

[y

the resulting sequences are:

CAUUUGGCUUGUGUGUCGAAUGGCCCCGGUACGUAGGCUAAAUGUACCG  1.2319
GGGGGGUGCGUUCACACCCCUCAUUUGGUGUGGAUGUGCUUUCUACACU  1.1554
CGGGUUGUAACUGGAUAGCCUGGAAACUGUUUGGUUGUAAUCCGAACAG  1.0956
[ooal

Given all 10 suggestions in our switch.out, we select the one with the best score with some command line tools
to use it as an RNAsubopt input file and build up the barriers tree.

$ tail -10 switch.out | awk '{print($1)}' | head -n 1 > subopt.in
$ RNAsubopt --nolLP -s -e 25 < subopt.in > subopt.out
$ barriers -G RNA-noLP --bsize --rates --minh 2 --max 30 < subopt.out > barriers.out
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tail -10 cuts the last 10 lines from the switch.out file and pipes them into an awk script. The function
print ($1) echoes only the first column and this is piped into the head program where the first line, which equals
the best scored sequence, is taken and written into subopt . in. Then RNAsubopt is called to process our sequence
and write the output to another file which is the input for the barriers calculation.

Below you find an example of the barrier tree calculation above done with the right settings (connected root) on
the left side and the wrong RNAsubobt -e value on the right. Keep in mind that switch.pl performs a stochastic
search and the output sequences are different every time because there are a lot of sequences which fit the structure
and switch calculates a new one everytime. Simply try to make sure.

L]

Tar

[ i ra i

left: Barriers tree as it should look like, all branches connected to the main root right: disconnected tree due to a
too low energy range (-e) parameter set in RNAsubopt.

Be careful to set the range -e high enough, otherwise we get a problem when calculation the kinetics using
treekin. Every branch should be somehow connected to the main root of the tree. Try -e 20 and -e 30 to
see the difference in the trees and choose the optimal value. By using --max 30 we shorten our tree to focus only
on the lowest minima.

We then select a branch preferably outside of the two main branches, here branch 30 (may differ from your own
calculation). Look at the barrier tree to find the best branch to start and replace 30 by the branch you would choose.
Now use treekin to plot concentration kinetics and think about the graph you just created.

$ treekin -m I --p® 30=1 < barriers.out > treekin.out
$ xmgrace -log x -nxy treekin.out

The graph could look like the one below, remember everytime you use switch.pl it can give you different se-
quences so the output varies too. Here the one from the example.
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3.6 RNA folding kinetics

RNA folding kinetics describes the dynamical process of how a RNA molecule approaches to its unique folded
biological active conformation (often referred to as the native state) starting from an initial ensemble of disordered
conformations e.g. the unfolded open chain. The key for resolving the dynamical behavior of a folding RNA chain
lies in the understanding of the ways in which the molecule explores its astronomically large free energy landscape,
arugged and complex hyper-surface established by all the feasible base pairing patterns a RNA sequence can form.
The challenge is to understand how the interplay of formation and break up of base pairing interactions along the
RNA chain can lead to an efficient search in the energy landscape which reaches the native state of the molecule
on a biologically meaningful time scale.

3.6.1 The Program RNA2Dfold

RNA2Dfold is a tool for computing the MFE structure, partition function and representative sample structures of
K, A neighborhoods and projects an high dimensional energy landscape of RNA into two dimensions [Lorenz et
al., 2009]. Therefore a sequence and two user-defined reference structures are expected by the program. For each
of the resulting distance class, the MFE representative, the Boltzmann probabilities and the Gibbs free energy is
computed. Additionally, representative suboptimal secondary structures from each partition can be calculated.

[s RNA2Dfold -p < 2dfold.inp > 2dfold.out

The outputfile 2dfold. out should look like below, check it out, e.g. using less:

CGUCAGCUGGGAUGCCAGCCUGCCCCGAAAGGGGCUUGGCGUUUUGGUUGUUGAUUCAACGAUCAC
CCCCCCCCCC-+ 4222220 .. CCCCC. - 2233333 :332)) .+ . . (CCCCCCCC--+22333)))) . (-30.40)

(OOl +0220) - . CCCCCa e 220222090000+ - . CCCreaCCC-20922009)) . (-30.40) <ref 1>
.................................................................. ( 0.00) <ref 2>

free energy of ensemble = -31.15 kcal/mol

k 1 P(neighborhood) P(MFE in neighborhood) P(MFE in ensemble) MFE .
— E_gibbs MFE-structure

0 24 0.29435909 1.00000000 0.29435892 -30.40 -30.40 .,

< CCCCCCCCC---29290 - - CCCCC--4222222-990)) -+ - CCCCaaCCC---22220000 -

1 23 0.17076902 0.47069889 0.08038083 -29.60 -30.06 .,

— CCCCCCCCCC. - -20220) - . CCCCC- 2222222299000 - -+ . (L2 20220900) -«

2 22 0.03575448 0.37731068 0.01349056 -28.50 -29.10 ((CC.

= (CCCC...2222)) .. (CCCC. . +2D223)..3))) . ... CCCCCCCC. - 2DDD000)) . .

(continues on next page)
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(continued from previous page)

2 24 0.00531223 0.42621709 0.00226416 -27.40 -27.93 .

= (CCCCCCCCC. 20220 .. . CCCCC. . +222233333))) - .. CCCCCCCCC. - 222)2)00)) .

3 21 0.00398349 0.29701636 0.00118316 -27.00 -27.75 .(CC.
< (CCCC....2)))). . CCCCC. . ..0000)..00) ... .. CCCCCCCC.+2233330)) -«

3 23 0.00233909 0.26432372 0.00061828 -26.60 -27.42 .,

< (CCCCCCCCC. . +02)) .. . (CCCC. . +2222333333)) . .. . CCCCCCCC. . 222D200)) ...

Looal

J

For visualizing the output the ViennaRNA Package includes two scripts 2Dlandscape_pf.gri,
2Dlandscape_mfe.gri located in /usr/share/ViennaRNA/. gri (a language for scientific graphics
programing) is needed to create a colored postscript plot. We use the partition function script to show the free
energies of the distance classes (graph below, left):

[$ gri ../Progs/VRP/share/ViennaRNA/2Dlandscape_pf.gri 2dfold.out ]

Compare the output file with the colored plot and determine the MFE minima with corresponding distance classes.
For easier comparision the outputfile of RNA2Dfold can be sorted by a simple sort command. For further infor-
mation regarding sort use the --help option.

[$ sort -k6 -n 2dfold.out > sort.out ]

Now we choose the structure with the lowest energy besides our startstructure, replace the open chain structure
from our old input with that structure and repeat the steps above with our new values:

e run RNA2Dfold
* plot it using 2Dlandscape_pf.gri

The new projection (right graph) shows the two major local minima which are separated by 39 bp (red dots in figure
below) and both are likely to be populated with high probability. The landscape gives an estimate of the energy
barrier separating the two minima (about -20 kcal/mol).

The red dots mark the distance from open chain to the MFE structure respectively the distance from the 2nd best
structure to the MFE. Note that the red dots were manually added to the image afterwards so don’t panic if you
don’t see them in your gri output.

N T 2 =a

-28 24 -20 -16 12 -8 -4 o

Minimum free energy in kealimol

30 -

i
I

distance to metastable state o en ¢ ain

T T T T T T T
0 5 10 15 20 25 20 3/ 40 45
distance to ground siate

3.6. RNA folding kinetics 47



ViennaRNA, Release 2.6.4

3.6.2 The Programs barriers and treekin

Introduction

The following assumes you already have the barriers and treekin programs installed. They are not part
of the ViennaRNA Package but their latest releases can be found at https://www.tbi.univie.ac.at/RNA/Barriers/
and https://www.tbi.univie.ac.at/RNA/Treekin/, respectively. Installation proceeds as shown for the ViennaRNA

Package.

Note: One problem that often occurs during treekin installation is the dependency on blas and lapack pack-
ages. For further information according to the barriers and treekin program also see the website.

A short recall on howto install/compile a program

* Get the barriers source from https://www.tbi.univie.ac.at/RNA/Barriers/

* extract the archive and go to the directory:

{$ tar -xzf Barriers-1.5.2.tar.gz

$ cd Barriers-1.5.2

¢ use the --prefix option to install in your Progs/ directory:

[$ ./configure --prefix=$HOME/Tutorial/Progs/barriers-1.5.2

¢ make install:

$ make
$ make install

Now barriers is ready to use. Apply the same steps to install treekin.

Note: Copy the barriers and treekin binaries to your bin folder or add the path to your PATH environment

variable.

Calculate the Barrier Tree

$ echo UCCACGGCUGUUAGUGGAUAACGGC | RNAsubopt --nolLP -s -e 10 > barseq.sub
$ barriers -G RNA-noLP --bsize --rates < barseq.sub > barseq.bar

You can restrict the number of local minima using the barriers command-line option --max followed by a
number. The option -G RNA-noLP instructs barriers that the input consists of RNA secondary structures without
isolated basepairs. --bsize adds size of the gradient basins and --rates tells barriers to compute rates between
macro states/basins for use with treekin. Another useful options is --minh to print only minima with a barrier

> dF. Look at the output file barseq.bar, its content should be like:

UCCACGGCUGUUAGUGGAUAACGGC

I CCCCCouvnoanc DI ooaaooc -6.90
—012023
2 csoooa e e ))))))) -6.80
828218
3 CCC . CCG)) e -0.80
—075516
4 .00 CCCGaa00) )., -0.80

0 10.00
1 9.30
1 0.90
1 2.70

115

32

58

10

37

-7.354207 23 =7
-6.828221 38 -6.
-0.800000 9 =l
-0.973593 11 -0.

(continues on next page)
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—996226
S e e 0.00 1 0.40 1 14 -0.000000 26 -0.
—612908
6 ...... CCo...CCnnn DN 0.60 2 0.40 1 22 0.600000 3 0.
—573278
/ ccooona CCCCCCe-22).-9) 1.00 1 1.50 1 95 1.000000 2 0.
—948187
8 .(C....(C...n DD I D). 1.40 1 0.30 1 30 1.400000 2 Lo
—228342

(continued from previous page)

J

The first row holds the input sequence, the successive list the local minima ascending in energy. The meaning of
the first 5 columns is as follows

label (number) of the local minima (1=MFE)
structure of the minimum
free energy of the minimum

label of deeper local minimum the current minimum merges with (note that the MFE has no deeper local
minimum to merge with)

height of the energy barrier to the local minimum to merge with
numbers of structures in the basin we merge with

number of basin which we merge to

free energy of the basin

number of structures in this basin using gradient walk

gradient basin (consisting of all structures where gradientwalk ends in the minimum)

barriers produced two additional files, the PostScript file tree.eps which represents the basic information of
the barseq.bar file visually:

I
BT
T
I
9*\
5“

Ly

B
=

and a text file rates.out which holds the matrix of transition probabilities between the local minima.
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Simulating the Folding Kinetics

The program treekin is used to simulate the evolution over time of the population densities of local minima
starting from an initial population density distribution p0 (given on the command-line) and the transition rate
matrix in the file rates.out.

[$ treekin -m I --p@® 5=1 < barseq.bar | xmgrace -log x -nxy -

FOO

1 UCCACGGCUGUUAGUGGAUAACGGC
I el I - I . I ol c ] c
o o
> >
0.8 o | o
o o
2 o peS
Wl (9] (9]
S c c
%0.6- o . @
= = c
=t c . [
E > >
2 04 : °
: 2 :
a, ® o
> >
0.2 c c
b-J b3
- > >
\ o (=]
0 3 L L sasum L s uum o ()
1 100 10000 1le+06 le+08 2 g

arbitrary time unit UCCACGGCUGUUAGUGGAUAACGGC

The simulation starts with all the population density in the open chain (local minimum 5, see barseq.bar). Over
time the population density of this state decays (yellow curve) and other local minima get populated. The simulation
ends with the population densities of the thermodynamic equilibrium in which the MFE (black curve) and local
minimum 2 (red curve) are the only ones populated. (Look at the dot plot of the sequence created with RNAsubopt
and RNAfold!)

3.7 Other Utilities

3.7.1 Utilities

We also ship a number of small utilities, many of them to manipulate the PostScript files produced by the structure
prediction programs RNAfold and RNAalifold.

Most of the Perl 5 utilities contain embedded pod documentation. Type e.g.

[perldoc relplot.pl

for detailed instructions.
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Available Tools

Tool Name Description
ct2db
Produce dot bracket notation of an RNA secondary
structure
given as mfold . ct file
b2mt.pl
Produce a mountain representation of a secondary
structure
from it’s dot-bracket notation, as produced by
RNAfold.
Output consists of simple x y data suitable as input
to a
plotting program. The mountain representation is a
xy plot with
sequence position on the x-axis and the number of
base pairs
enclosing that position on the y-axis.
Example:
RNAfold < my.seq | b2mt.pl | xmgrace -
—pipe
T T T T T
5 A
20+
1 :\.
'.E, \‘."-.
10
pair probabilities
e structure
s positional entropy
reference structure
% % © % TR Y
position k
cmount.pl
Produce a PostScript mountain plot from a color dot
plot as
created by RNAalifold -p or alidot -p. Each base
pair
is represented by a trapez whose color encodes the
number of
consistent and compensatory mutations supporting
that pair:
Red marks pairs with no sequence variation; ochre,
green, turquoise,
blue, and violet mark pairs with 2,3,4,5,6 different
types of pairs,
respectively.
Example:
cmount.pl atidot.pg,> Cmoynt,ps .
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CHAPTER
FOUR

MANPAGES

The ViennaRNA Package comes with a number of executable programs that provide command line interfaces to
the most important algorithms implemented in RNAIib.

Find an overview of these programs and their corresponding manual pages below.
4.1 RNA2Dfold
RNA2Dfold - manual page for RNA2Dfold 2.6.4

4.1.1 Synopsis

[RNAZDfold [OPTION]. ..

4.1.2 DESCRIPTION

RNA2Dfold 2.6.4
Compute MFE structure, partition function and representative sample structures of k,I neighborhoods

The program partitions the secondary structure space into (basepair)distance classes according to two fixed refer-
ence structures. It expects a sequence and two secondary structures in dot-bracket notation as its inputs. For each
distance class, the MFE representative, Boltzmann probabilities and Gibbs free energy is computed. Additionally,
a stochastic backtracking routine allows one to produce samples of representative suboptimal secondary structures
from each partition

-h, --help

Print help and exit
--detailed-help

Print help, including all details and hidden options, and exit
--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit
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I/0 Options:

Command line options for input and output (pre-)processing
-j, --numThreads=INT
Set the number of threads used for calculations (only available when compiled with OpenMP support)

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-p, --partfunc
calculate partition function and thus, Boltzmann probabilities and Gibbs free energy
(default=off)

--stochBT=INT
backtrack a certain number of Boltzmann samples from the appropriate k,I neighborhood(s)

--neighborhood=<k>:<I>

backtrack structures from certain k,I-neighborhood only, can be specified multiple times
(<k>:<l>,<m>:<n>,...)

-K, --maxDist1=INT
maximum distance to first reference structure

If this value is set all structures that exhibit a basepair distance greater than maxDistl will be thrown into a
distance class denoted by K=L=-1

-L, --maxDist2=INT
maximum distance to second reference structure

If this value is set all structures that exhibit a basepair distance greater than maxDistl will be thrown into a
distance class denoted by K=L=-1

-S, --p£fScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default="1.07")

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.
--noBT

do not backtrack structures, calculate energy contributions only

(default=off)
-c, --circ

Assume a circular (instead of linear) RNA molecule.

(default=off)
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Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")

-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops
(possible values="0", “2” default="2")

With -d2 dangling energies will be added for the bases adjacent to a helix on both sides in any case. The
option -d@ ignores dangling ends altogether (mostly for debugging).

--noGU
Do not allow GU pairs.

(default=off)

--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.
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4.1.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

R. Lorenz, C. Flamm, I.L. Hofacker (2009), “2D Projections of RNA folding Landscapes”, GI, Lecture Notes in
Informatics, German Conference on Bioinformatics 2009: 157, pp 11-20

M. Zuker, P. Stiegler (1981), “Optimal computer folding of large RNA sequences using thermodynamic and aux-
iliary information”, Nucl Acid Res: 9, pp 133-148

J.S. McCaskill (1990), “The equilibrium partition function and base pair binding probabilities for RNA secondary
structures”, Biopolymers: 29, pp 1105-1119

L.L. Hofacker and P.F. Stadler (2006), “Memory Efficient Folding Algorithms for Circular RNA Secondary Struc-
tures”, Bioinformatics

D. Adams (1979), “The hitchhiker’s guide to the galaxy”, Pan Books, London

The calculation of mfe structures is based on dynamic programming algorithm originally developed by M. Zuker
and P. Stiegler. The partition function algorithm is based on work by J.S. McCaskill.

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.1.4 AUTHOR

Ronny Lorenz

4.1.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.2 RNAaliduplex

RNAaliduplex - manual page for RNAaliduplex 2.6.4
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4.2.1 Synopsis

[RNAaliduplex [options] <filel.aln> <file2.aln>

4.2.2 DESCRIPTION

RNAaliduplex 2.6.4
Predict conserved RNA-RNA interactions between two alignments

The program reads two alignments of RNA sequences in CLUSTAL format and predicts optimal and suboptimal
binding sites, hybridization energies and the corresponding structures. The calculation takes only inter-molecular
base pairs into account, for the general case use RNAcofold. The use of alignments allows one to focus on binding
sites that are evolutionary conserved. Note, that the two input alignments need to have equal number of sequences
and the same order, i.e. the 1st sequence in filel will be hybridized to the 1st in file2 etc.

The computed binding sites, energies, and structures are written to stdout, one structure per line. Each line consist
of: The structure in dot bracket format with a “&” separating the two strands. The range of the structure in the two
sequences in the format “from,to : from,to”; the energy of duplex structure in kcal/mol. The format is especially
useful for computing the hybrid structure between a small probe sequence and a long target sequence.

-h, --help

Print help and exit
--detailed-help

Print help, including all details and hidden options, and exit
--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

Algorithms:

Select additional algorithms which should be included in the calculations.

-e, --deltaEnergy=range

Compute suboptimal structures with energy in a certain range of the optimum (kcal/mol). Default is calcu-
lation of mfe structure only.

-s, --sorted
Sort output by free energy.

(default=off)

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files
-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")
-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.
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-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.

--saltInit=DOUBLE
Provide salt correction for duplex initialization (in kcal/mol).

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP
Produce structures without lonely pairs (helices of length 1).
(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given O stacking energy.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.
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--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.2.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”’, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.2.4 AUTHOR

Ivo L Hofacker, Ronny Lorenz

4.2.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.2.6 SEE ALSO

RNAduplex(1) RNAcofold(1) RNAfold(1)

4.3 RNAalifold

RNAalifold - manual page for RNAalifold 2.6.4
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4.3.1 Synopsis

[RNAalifold [options] [<input®.aln>] [<inputl.aln>]...

4.3.2 DESCRIPTION

RNAalifold 2.6.4
calculate secondary structures for a set of aligned RNAs

Read aligned RNA sequences from stdin or file.aln and calculate their minimum free energy (mfe) structure, parti-
tion function (pf) and base pairing probability matrix. Currently, input alignments have to be in CLUSTAL, Stock-
holm, FASTA, or MAF format. The input format must be set manually in interactive mode (default is Clustal),
but will be determined automagically from the input file, if not expplicitly set. It returns the mfe structure in
bracket notation, its energy, the free energy of the thermodynamic ensemble and the frequency of the mfe structure
in the ensemble to stdout. It also produces Postscript files with plots of the resulting secondary structure graph
(““alirna.ps”) and a “dot plot” of the base pairing matrix (“alidot.ps”). The file “alifold.out” will contain a list of
likely pairs sorted by credibility, suitable for viewing with “AliDot.pl”. Be warned that output file will overwrite
any existing files of the same name.
-h, --help

Print help and exit
--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit
-V, --version

Print version and exit

-v, --verbose
Be verbose.

(default=off)
-q, --quiet
Be quiet. (default=off)

This option can be used to minimize the output of additional information and non-severe warnings which
otherwise might spam stdout/stderr.

I/0 Options:

Command line options for input and output (pre-)processing

-f, --input-format=C|S|F]M
File format of the input multiple sequence alignment (MSA).
If this parameter is set, the input is considered to be in a particular file format. Otherwise, the program
tries to determine the file format automatically, if an input file was provided in the set of parameters. In
case the input MSA is provided in interactive mode, or from a terminal (TTY), the programs default is to
assume CLUSTALW format. Currently, the following formats are available: ClustalW (C), Stockholm 1.0
(S), FASTA/Pearson (F), and MAF (M).

--mis
Output “most informative sequence” instead of simple consensus: For each column of the alignment output
the set of nucleotides with frequency greater than average in [UPAC notation.

(default=off)
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-j, -—-jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default="0")

Default processing of input data is performed in a serial fashion, i.e. one alignment at a time. Using this
switch, a user can instead start the computation for many alignments in the input in parallel. RNAalifold
will create as many parallel computation slots as specified and assigns input alignments of the input file(s)
to the available slots. Note, that this increases memory consumption since input alignments have to be
kept in memory until an empty compute slot is available and each running job requires its own dynamic
programming matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.

(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will
most likely not follow the order of the corresponding input data set. The default of RNAalifold is to use a
specialized data structure to still keep the results output in order with the input data. However, this comes
with a trade-off in terms of memory consumption, since all output must be kept in memory for as long as
no chunks of consecutive, ordered output are available. By setting this flag, RNAalifold will not buffer
individual results but print them as soon as they have been computated.

--noconv
Do not automatically substitute nucleotide “T”” with “U”.

(default=off)
-n, --continuous-ids

Use continuous alignment ID numbering when no alignment ID can be retrieved from input data.

(default=off)

Due to its past, RNAalifold produces a specific set of output file names for the first input alignment,
“alirna.ps”, “alidot.ps”, etc. But for all further alignments in the input, it usually adopts a naming scheme
based on IDs, which may be retrieved from the input alignment’s meta-data, or generated by a prefix followed
by an increasing counter. Setting this flag instructs RNAalifold to use the ID naming scheme also for the

first alignment.
--auto-id

Automatically generate an ID for each alignment.

(default=off)

The default mode of RNAalifold is to automatically determine an ID from the input alignment if the input file
format allows to do that. Alignment IDs are, for instance, usually given in Stockholm 1.0 formatted input.
If this flag is active, RNAalifold ignores any IDs retrieved from the input and automatically generates an ID
for each alignment.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).
(default="alignment”)

If this parameter is set, each alignment will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_aln.ps” (annotated alignment), etc. where xxxx is the alignment number beginning
with the second alignment in the input. Use this setting in conjunction with the --continuous-ids flag to
assign IDs beginning with the first input alignment.
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--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default="_")

This parameter can be used to change the default delimiter _ between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT
Specify the number of digits of the counter in automatically generated alignment IDs.
(default="4")

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This

number will always be left-padded by leading zeros, such that the number takes up a certain width. Using

this parameter, the width can be specified to the users need. We allow numbers in the range [1:18].
--id-start=LONG

Specify the first number in automatically generated alignment IDs.
(default="1")

When alignment IDs are automatically generated, they receive an increasing number, usually starting with
1. Using this parameter, the first number can be specified to the users requirements. Note: negative num-
bers are not allowed. Note: Setting this parameter implies continuous alignment IDs, i.e. it activates the
--continuous-ids flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.
(default=""ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

Algorithms:

Select additional algorithms which should be included in the calculations.

-p, --partfunc[=INT]
Calculate the partition function and base pairing probability matrix in addition to the mfe structure. Default
is calculation of mfe structure only.

(default="1")

In addition to the MFE structure we print a coarse representation of the pair probabilities in form of a pseudo
bracket notation, followed by the ensemble free energy, as well as the centroid structure derived from the
pair probabilities together with its free energy and distance to the ensemble. Finally it prints the frequency
of the mfe structure.

An additionally passed value to this option changes the behavior of partition function calculation: -p® deac-
tivates the calculation of the pair probabilities, saving about 50% in runtime. This prints the ensemble free
energy dG=-kT 1n(Z).

--betaScale=DOUBLE
Set the scaling of the Boltzmann factors. (default="1.")

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
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factors then become exp(- dG/(kTn*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state, T the absolute temperature and n the number of sequences.

-S, --p£Scale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default="1.07")

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.
--MEA[=gamma]

Compute MEA (maximum expected accuracy) structure.

(default="1.")

The expected accuracy is computed from the pair probabilities: each base pair (i, j) receives a score
2*gamma*p_ij and the score of an unpaired base is given by the probability of not forming a pair. The
parameter gamma tunes the importance of correctly predicted pairs versus unpaired bases. Thus, for small
values of gamma the MEA structure will contain only pairs with very high probability. Using --MEA implies
-p for computing the pair probabilities.

--sci

Compute the structure conservation index (SCI) for the MFE consensus structure of the alignment.
(default=off)

-c, --circ
Assume a circular (instead of linear) RNA molecule.
(default=off)

--bppmThreshold=cutoff
Set the threshold/cutoff for base pair probabilities included in the postscript output.
(default="1e-6")

By setting the threshold the base pair probabilities that are included in the output can be varied. By default
only those exceeding le-6 in probability will be shown as squares in the dot plot. Changing the threshold
to any other value allows for increase or decrease of data.

-g, --gquad
Incoorporate G-Quadruplex formation into the structure prediction algorithm.
(default=off)

-s, --stochBT=INT

Stochastic backtrack. Compute a certain number of random structures with a probability dependend on the
partition function. See -p option in RNAsubopt.

--stochBT_en=INT
same as -s option but also print out the energies and probabilities of the backtraced structures.
-N, --nonRedundant

Enable non-redundant sampling strategy.

(default=off)
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Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default="-1")

-C, --constraint[=filename]

Calculate structures subject to constraints. The constraining structure will be read from stdin, the alignment
has to be given as a file name on the command line.

(default="")

The program reads first the sequence, then a string containing constraints on the structure encoded with the
symbols:

. (no constraint for this base)

| (the corresponding base has to be paired

x (the base is unpaired)

< (base i is paired with a base j>i)

> (base i is paired with a base j<i)

and matching brackets () (base i pairs base j)

With the exception of |, constraints will disallow all pairs conflicting with the constraint. This is usually
sufficient to enforce the constraint, but occasionally a base may stay unpaired in spite of constraints. PF
folding ignores constraints of type |.

--batch

Use constraints for all alignment records. (default=off)

Usually, constraints provided from input file are only applied to a single sequence alignment. Therefore,
RNAalifold will stop its computation and quit after the first input alignment was processed. Using this
switch, RNAalifold processes all sequence alignments in the input and applies the same provided constraints
to each of them.

--enforceConstraint

Enforce base pairs given by round brackets ( ) in structure constraint.

(default=off)

--SS_cons

Use consensus structures from Stockholm file (#=GF SS_cons) as constraint.
(default=off)

Stockholm formatted alignment files have the possibility to store a secondary structure string in one of if
(#=GC) column annotation meta tags. The corresponding tag name is usually SS_cons, a consensus sec-
ondary structure. Activating this flag allows one to use this consensus secondary structure from the input
file as structure constraint. Currently, only the following characters are interpreted:

() [mathing parenthesis: column i pairs with column j]
< > [matching angular brackets: column i pairs with column j]

All other characters are not interpreted (yet). Note: Activating this flag implies --constraint.

--shape=filel file2

Use SHAPE reactivity data to guide structure predictions.

Multiple shapefiles for the individual sequences in the alignment may be specified as a comma separated list.
An optional association of particular shape files to a specific sequence in the alignment can be expressed by
prepending the sequence number to the filename, e.g. “5=seq5.shape,3=seq3.shape” will assign the reactivity
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values from file seq5.shape to the fifth sequence in the alignment, and the values from file seq3.shape to
sequence 3. If no assignment is specified, the reactivity values are assigned to corresponding sequences in
the order they are given.

--shapeMethod=D[mX][bY]
Specify the method how to convert SHAPE reactivity data to pseudo energy contributions.
(default="D")

Currently, the only data conversion method available is that of to Deigan et al 2009. This method is the
default and is recognized by a capital D in the provided parameter, i.e.: --shapeMethod="D" is the default
setting. The slope m and the intercept b can be set to a non-default value if necessary. Otherwise m=1.8
and b=-0.6 as stated in the paper mentionen before. To alter these parameters, e.g. m=1.9 and b=-0.7, use
a parameter string like this: --shapelethod="Dm1.9b-0.7”. You may also provide only one of the two
parameters like: --shapeMethod="Dm1.9” or --shapeMethod="Db-0.7".

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files
-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")
-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters
-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")
With -d2 dangling energies will be added for the bases adjacent to a helix on both sides
in any case.
The option -d® ignores dangling ends altogether (mostly for debugging).
--noLP
Produce structures without lonely pairs (helices of length 1).
(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.
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--noGU
Do not allow GU pairs.
(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--cfactor=DOUBLE
Set the weight of the covariance term in the energy function
(default="1.0")
--nfactor=DOUBLE
Set the penalty for non-compatible sequences in the covariance term of the energy function
(default="1.0")
-E, --endgaps
Score pairs with endgaps same as gap-gap pairs.
(default=off)
-R, --ribosum_file=ribosumfile
use specified Ribosum Matrix instead of normal
energy model.
Matrixes to use should be 6x6 matrices, the order of the terms is AU, CG, GC, GU, UA, UG.
-r, --ribosum_scoring
use ribosum scoring matrix. (default=off)
The matrix is chosen according to the minimal and maximal pairwise identities of the sequences in the file.
--old
use old energy evaluation, treating gaps as characters.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given O stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.
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--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots

--color
Produce a colored version of the consensus structure plot “alirna.ps” (default b&w only)
(default=off)

--aln

Produce a colored and structure annotated alignment in PostScript format in the file “aln.ps” in the current
directory.

(default=off)
--aln-EPS-cols=INT

Number of columns in colored EPS alignment output.

(default="60")

A value less than 1 indicates that the output should not be wrapped at all.
--aln-stk[=prefix]

Create a multi-Stockholm formatted output file. (default="RNAalifold_results”)

The default file name used for the output is “RNAalifold_results.stk””. Users may change the filename to
“prefix.stk” by specifying the prefix as optional argument. The file will be create in the current directory
if it does not already exist. In case the file already exists, output will be appended to it. Note: Any special
characters in the filename will be replaced by the filename delimiter, hence there is no way to pass an entire
directory path through this option yet. (See also the “—filename-delim” parameter)

--noPS
Do not produce postscript drawing of the mfe structure.
(default=off)
--noDP
Do not produce dot-plot postscript file containing base pair or stack probabilitities.
(default=off)

In combination with the -p option, this flag turns-off creation of individual dot-plot files. Consequently,
computed base pair probability output is omitted but centroid and MEA structure prediction is still per-
formed.

-t, --layout-type=INT
Choose the layout algorithm. (default="1")

Select the layout algorithm that computes the nucleotide coordinates. Currently, the following algorithms
are available:

0: simple radial layout
1: Naview layout (Bruccoleri et al. 1988)
2: circular layout

3: RNAturtle (Wiegreffe et al. 2018)
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Caveats:

4: RNApuzzler (Wiegreffe et al. 2018)

Sequences are not weighted. If possible, do not mix very similar and dissimilar sequences. Duplicate sequences,
for example, can distort the prediction.

4.3.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),

“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

L.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “‘Fast Folding and Comparison

of RNA Secondary Structures”’, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The algorithm is a variant of the dynamic programming algorithms of M. Zuker and P. Stiegler (mfe) and J.S.

McCaskill (pf) adapted for sets of aligned sequences with covariance information.

Ivo L. Hofacker, Martin Fekete, and Peter F. Stadler (2002), “Secondary Structure Prediction for Aligned RNA
Sequences”, J.Mol.Biol.: 319, pp 1059-1066.

Stephan H. Bernhart, Ivo L. Hofacker, Sebastian Will, Andreas R. Gruber, and Peter F. Stadler (2008), “RNAalifold:
Improved consensus structure prediction for RNA alignments”, BMC Bioinformatics: 9, pp 474

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA

secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of

nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.3.4 EXAMPLES

A simple call to compute consensus MFE structure, ensemble free energy, base pair probabilities, centroid struc-
ture, and MEA structure for a multiple sequence alignment (MSA) provided as Stockholm formatted file align-
ment.stk might look like:

[$ RNAalifold -p --MEA alignment.stk

Consider the following MSA file for three sequences

# STOCKHOLM 1.0

#=GF AC RF01293
#=GF ID  ACA59
#=GF DE  Small nucleolar RNA ACA59
#=GF AU Wilkinson A
#=GF SE Predicted; WAR; Wilkinson A
#=GF SS Predicted; WAR; Wilkinson A
#=GF GA  43.00
#=GF TC  44.90
#=GF NC 40.30
#=GF TP Gene; snRNA; snoRNA; HACA-box;
#=GF BM cmbuild -F CM SEED
(continues on next page)
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(continued from previous page)

#=GF CB cmcalibrate --mpi CM

#=GF SM cmsearch --cpu 4 --verbose --nohmmonly -E 1000 -Z 549862.597050 CM SEQDB
#=GF DR snoRNABase; ACA59;

#=GF DR SO; 0001263; ncRNA_gene;

#=GF DR GO; 0006396; RNA processing;

#=GF DR GO; 0005730; nucleolus;

#=GF RN [1]

#=GF RM 15199136

#=GF RT  Human box H/ACA pseudouridylation guide RNA machinery.
#=GF RA Kiss AM, Jady BE, Bertrand E, Kiss T

#=GF RL Mol Cell Biol. 2004;24:5797-5807.

#=GF WK  Small_nucleolar_RNA

#=GF SQ 3

AL031296.1/85969-86120 o
—CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGUAACAAUACUUACUCUCGUUGGUGAUAAGGAACAGCU
AANU01225121.1/438-603 o
—CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGUGACAAUACUUACUCUCGUUGGUGAUAAGGAACAGCU
AAWR02037329.1/29294-29150 ---CUCGACACCACU---
—GCCUCGGUUACCCAUCGGUGCAGUGCGGGUAGUAGUACCAAUGCUAAUUAGUUGUGAGGACCAACU

#=GC SS_cons  ----- ((C(,<<<<<L<< s .
SO>>> L))
#=GC RF

— CUGCcccaCAaCacuuguGCCUCaGUUACcCauagguGuAGUGaGgGuggcAaUACccaCcCucgUUgGuggUaAGGAaCAgCU
//

Then, the above program call will produce this output:

3 sequences; length of alignment 84.

>ACA59
CUGCCUCACAACAUUUGUGCCUCAGUUACCCAUAGAUGUAGUGAGGGUAACAAUACUUACUCUCGUUGGUGAUAAGGAACAGCU
N (I (O DI e CCCCCennnnn DD DD I .
—~(-12.54 = -12.77 + 0.23)

R (O (T DDDDDIDDIEDDIDDDEL FEERERIIE ... I DD .
—~[-14.38]

P (O (O 233033320003t (CUCFPrrE DD acccoocasaco
~{-12.44 = -12.33 + -0.10 d=10.94}

N (I (O DI e (O D)D) FIFENNN

~{-12.44 = -12.33 + -0.10 MEA=-66.65}
frequency of mfe structure in ensemble 0.368739; ensemble diversity 17.77

Here, the first line is written to stderr and simply states the number of sequences and the length of the alignment.
This line can be suppressed using the --quiet option. The main output then consists of 7 lines, where the first
two resemble the FASTA header with the ID as read from the input data set, followed by the consensus sequence
in the second line. The third line consists of the consensus secondary structure in dot-bracket notation followed
by the averaged minimum free energy in parenthesis. This energy is composed of two major contributions, the
actual free energies derived from the Nearest Neighbor model, and the covariance pseudo-energy term, which are
both displayed after the equal sign. The fourth line shows the base pair propensity in pseudo dot-bracket notation
followed by the ensemble free energy dG = -kT In(Z) in square brackets. Similarly, the next two lines state the
controid- and the MEA structure in dot-bracket notation, followed by their corresponding free energy contributions,
the mean distance (d) to the ensemble as well as the maximum expected accuracy (MEA). Again, the free energies
are split into Nearest Neighbor contribution and the covariance pseudo-energy term.

Furthermore, RNAalifold will produce three output files: ACAS59_ss.ps, ACA59_dp.ps, and ACA59_ali.out that
contain the secondary structure drawing, the base pair probability dot-plot, and a detailed table of base pair prob-
abilities, respectively.
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4.3.5 THE ALIOUT FILE

When computing base pair probabilities (--partfunc option), RNAalifold will produce a file with the suffix
ali.out. This file contains the base pairing probabilities between different alignment columns together with some
detailed statistics for the individual sequences within the alignment. The file is a simple text file with a two line
header that states the number of sequences and length of the alignment. The first couple of lines of this file may
look like:

3 sequence; length of alignment 84
alifold output
14 36 0 92.7% 0.212 CG:1 UA:2

13 37 0 92.7% 0.218 GU:1 AU:2
12 38 0 92.7% 0.231 CG:3
15 35 0 91.9% 0.239 UG:3
16 34 0 85.2% 0.434 UA:2 ==31l

8 42 0 80.7% 0.526 AU:3 +
9 41 O 80.4% 0.542 CG:3 +
7 43 1 80.1% 0.541 CG:2  +

Starting with the third row, there are at least six and at most 13 columns separated by whitespaces stating: (1) the
i-position and (2) the j-position of a potential base pair (i, j), followed by (3) the number of counter examples,
i.e. the number of sequences in the alignment that can’t form a canonical base pair with their respective sequence
positions. Next is (4) the base pair probabilitiy in percent, (5) a pseudo entropy measure S_ij = S_i + S_j - p_ij
In(p_ij), where S_iand S_j are the positional entropies for the two alignment columns i and j, and p_ij is the base pair
probability. Finally, the last columns (6-12) state the number of particular base pairs for the individual sequences in
the alignment. Here, we distinguish the base pairs “GC”,”CG”,’AU”,”UA”,”GU”,”UG”, and the special case “-”
that represents gaps at both positions i and j. Finally, base pairs that are not part of the MFE structure are marked
by an additional “+” sign in the last column.

4.3.6 AUTHOR

Ivo L Hofacker, Stephan Bernhart, Ronny Lorenz

4.3.7 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.3.8 SEE ALSO

The ALIDOT package http://www.tbi.univie.ac.at/RNA/Alidot/

4.4 RNAcofold

RNAcofold - manual page for RNAcofold 2.6.4
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4.4.1 Synopsis

[RNAcofold [OPTION]... [FILE]...

4.4.2 DESCRIPTION

RNAcofold 2.6.4
calculate secondary structures of two RNAs with dimerization

The program works much like RNAfold, but allows one to specify two RNA sequences which are then allowed to
form a dimer structure. RNA sequences are read from stdin in the usual format, i.e. each line of input corresponds
to one sequence, except for lines starting with > which contain the name of the next sequence. To compute the
hybrid structure of two molecules, the two sequences must be concatenated using the & character as separator.
RNACcofold can compute minimum free energy (mfe) structures, as well as partition function (pf) and base pairing
probability matrix (using the -p switch) Since dimer formation is concentration dependent, RNAcofold can be
used to compute equilibrium concentrations for all five monomer and (homo/hetero)-dimer species, given input
concentrations for the monomers. Output consists of the mfe structure in bracket notation as well as PostScript
structure plots and “dot plot” files containing the pair probabilities, see the RNAfold man page for details. In the
dot plots a cross marks the chain break between the two concatenated sequences. The program will continue to
read new sequences until a line consisting of the single character @ or an end of file condition is encountered.

-h, --help
Print help and exit

--detailed-help
Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/0 Options:

Command line options for input and output (pre-)processing

--output-format=format-character
Change the default output format.

(default="V")

The following output formats are currently supported:

ViennaRNA format (V), Delimiter-separated format (D) also known as CSV
format.

--csv-delim=delimiter

Change the delimiting character for Delimiter-separated output format, such as CSV.
(default=",")

Delimiter-separated output defaults to comma separated values (CSV), i.e. all data in one data set is delimited
by a comma character. This option allows one to change the delimiting character to something else. Note,
to switch to tab-separated data, use $'\t' as delimiting character.
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--csv-noheader

Do not print header for Delimiter-separated output, such as CSV.

(default=off)

-j, --jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default="0")

Default processing of input data is performed in a serial fashion, i.e. one sequence pair at a time. Using this
switch, a user can instead start the computation for many sequence pairs in the input in parallel. RNAcofold
will create as many parallel computation slots as specified and assigns input sequences of the input file(s)
to the available slots. Note, that this increases memory consumption since input alignments have to be
kept in memory until an empty compute slot is available and each running job requires its own dynamic
programming matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.
(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will
most likely not follow the order of the corresponding input data set. The default of RNAcofold is to use a
specialized data structure to still keep the results output in order with the input data. However, this comes
with a trade-off in terms of memory consumption, since all output must be kept in memory for as long
as no chunks of consecutive, ordered output are available. By setting this flag, RNAcofold will not buffer
individual results but print them as soon as they have been computated.

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNAcofold is to automatically determine an ID from the input sequence data if the
input file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences.
If this flag is active, RNAcofold ignores any IDs retrieved from the input and automatically generates an ID
for each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add
a FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).
(default=""sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_dp2.ps” (stack probabilities), etc. where xxxx is the sequence number. Note: Set-
ting this parameter implies --auto-id.

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default="_"

This parameter can be used to change the default delimiter “_” between the prefix string and the increasing
number for automatically generated ID.
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--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.
(default="4")

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id.

--id-start=LONG

Specify the first number in automatically generated IDs.
(default="1")

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR
Change the delimiting character used in sanitized filenames.

(default=""ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

--filename-full
Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001" without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-p, --partfunc[=INT]

Calculate the partition function and base pairing probability matrix in addition to the mfe structure. Default
is calculation of mfe structure only.

(default="1")

In addition to the MFE structure we print a coarse representation of the pair probabilities in form of a pseudo
bracket notation, followed by the ensemble free energy, as well as the centroid structure derived from the
pair probabilities together with its free energy and distance to the ensemble. Finally it prints the frequency
of the mfe structure, and the structural diversity (mean distance between the structures in the ensemble).
See the description of pf_fold() and mean_bp_dist() and centroid() in the RNAlib documentation for details.
Note that unless you also specify -d2 or -d0, the partition function and mfe calculations will use a slightly
different energy model. See the discussion of dangling end options below.

An additionally passed value to this option changes the behavior of partition function calculation:
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In order to calculate the partition function but not the pair probabilities
use the -p® option and save about

50% in runtime. This prints the ensemble free energy dG=-kT 1n(Z).

-a, --all_p£f[=INT]

Compute the partition function and free energies not only of the hetero-dimer consisting of the two input
sequences (the AB dimer), but also of the homo-dimers AA and BB as well as A and B monomers.

(default="1")

The output will contain the free energies for each of these species, as well as 5 dot plots containing the
conditional pair probabilities, called “ABname5.ps”, “AAname5.ps” and so on. For later use, these dot plot
files also contain the free energy of the ensemble as a comment. Using -a automatically switches on the -p
option. Base pair probability computations may be turned off altogether by providing 0 as an argument to
this parameter. In that case, no dot plot files will be generated.

--betaScale=DOUBLE

Set the scaling of the Boltzmann factors. (default="1.")

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
factors then become exp (- dG/(kT*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state and T the absolute temperature.

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default="1.07")

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

-c, --concentrations

In addition to everything listed under the -a option, read in initial monomer concentrations and compute the
expected equilibrium concentrations of the 5 possible species (AB, AA, BB, A, B).

(default=off)

Start concentrations are read from stdin (unless the - option is used) in [mol/1], equilibrium concentrations
are given realtive to the sum of the two inputs. An arbitrary number of initial concentrations can be specified
(one pair of concentrations per line).

-f, --concfile=filename

Specify a file with initial concentrations for the two sequences.

The table consits of arbitrary many lines with just two numbers (the concentration of sequence A and B).
This option will automatically toggle the -c (and thus -a and -p) options (see above).

--centroid

Compute the centroid structure. (default=off)

Additionally to the MFE structure, compute the centroid representative of the structure ensemble. Here,
we apply the base pair distance as distance measure, and report the structure that minimizes its Boltzmann
weighted base pair distance to the rest of the ensemble. Computing the centroid structure requires equilibrium
base pair probabilities. Therefore, this option implies the -p switch. For historical reasons, the centroid
structure output is deactivated by default.

--MEA[=gamma]

Compute MEA (maximum expected accuracy) structure.
(default="1.")

The expected accuracy is computed from the pair probabilities: each base pair (i,j) receives a score
2*gamma*p_ij and the score of an unpaired base is given by the probability of not forming a pair. The
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parameter gamma tunes the importance of correctly predicted pairs versus unpaired bases. Thus, for small
values of gamma the MEA structure will contain only pairs with very high probability. Using --MEA implies
-p for computing the pair probabilities.

--bppmThreshold=cutoff
Set the threshold/cutoff for base pair probabilities included in the postscript output.
(default="1e-5")

By setting the threshold the base pair probabilities that are included in the output can be varied. By default
only those exceeding le-5 in probability will be shown as squares in the dot plot. Changing the threshold
to any other value allows for increase or decrease of data.

-g. --gquad
Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT
Set the maximum base pair span.

(default="-1")
-C, --constraint[=filename]
Calculate structures subject to constraints. (default="")

The program reads first the sequence, then a string containing constraints on the structure encoded with the
symbols:

. (no constraint for this base)

| (the corresponding base has to be paired

x (the base is unpaired)

< (base i is paired with a base j>i)

> (base i is paired with a base j<i)

and matching brackets () (base i pairs base j)

With the exception of |, constraints will disallow all pairs conflicting with the constraint. This is usually
sufficient to enforce the constraint, but occasionally a base may stay unpaired in spite of constraints. PF
folding ignores constraints of type |.

--batch
Use constraints for multiple sequences. (default=off)

Usually, constraints provided from input file only apply to a single input sequence. Therefore, RNAcofold
will stop its computation and quit after the first input sequence was processed. Using this switch, RNAcofold
processes multiple input sequences and applies the same provided constraints to each of them.

--canonicalBPonly
Remove non-canonical base pairs from the structure constraint.
(default=off)

--enforceConstraint

Enforce base pairs given by round brackets ( ) in structure constraint.

(default=off)
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--shape=filename

Use SHAPE reactivity data to guide structure predictions.

--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default="D")

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.
D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapelMethod="D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
like this: --shapeMethod="Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapelMethod="Dm1.9” or --shapelMethod="Db-0.7".

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

etal 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapelMethod="7b0.8").

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012. Perturbation vectors can be calculated by using RNApvmin.

--shapeConversion=method

Select method for SHAPE reactivity conversion.
(default="0")

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) 0: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

--commands=filename

Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default="37.0")

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.
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-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.
--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.

--saltInit=DOUBLE
Provide salt correction for duplex initialization (in kcal/mol).
-m, --modifications[=STRING]
Allow for modified bases within the RNA sequence string.
(default="7I6P9D")

Treat modified bases within the RNA sequence differently, i.e. use corresponding energy corrections and/or
pairing partner rules if available. For that, the modified bases in the input sequence must be marked by
their corresponding one-letter code. If no additional arguments are supplied, all available corrections are
performed. Otherwise, the user may limit the modifications to a particular subset of modifications, resp.
one-letter codes, e.g. -mP6 will only correct for pseudouridine and m6A bases.

Currently supported one-letter codes and energy corrections are:
7: 7-deaza-adenonsine (7DA)
I: Inosine
6: N6-methyladenosine (m6A)
P: Pseudouridine
9: Purine (a.k.a. nebularine)
D: Dihydrouridine
--mod-file=STRING
Use additional modified base data from JSON file.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP
Produce structures without lonely pairs (helices of length 1).
(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.
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--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given O stacking energy.

-e, --energyModel=INT
Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.

(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots

--noPS

Do not produce postscript drawing of the mfe structure.

(default=off)

4.4.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

S.H.Bernhart, Ch. Flamm, P.F. Stadler, I.L. Hofacker, (2006), “Partition Function and Base Pairing Probabilities
of RNA Heterodimers”, Algorithms Mol. Biol.
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The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.4.4 AUTHOR

Ivo L Hofacker, Peter F Stadler, Stephan Bernhart, Ronny Lorenz

4.4.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.5 RNAdistance
RNAdistance - manual page for RNAdistance 2.6.4

4.5.1 Synopsis

[RNAdistance [OPTION]... ]

4.5.2 DESCRIPTION

RNAdistance 2.6.4
Calculate distances between RNA secondary structures

This program reads RNA secondary structures from stdin and calculates one or more measures for their dissimilar-
ity, based on tree or string editing (alignment). In addition it calculates a “base pair distance” given by the number
of base pairs present in one structure, but not the other. For structures of different length base pair distance is not
recommended.

RNAdistance accepts structures in bracket format, where matching brackets symbolize base pairs and unpaired
bases are represented by a dot ., or coarse grained representations where hairpins, interior loops, bulges, mul-
tiloops, stacks and external bases are represented by (H), (I), (B), M), (S), and (E), respectively. These can be
optionally weighted. Full structures can be represented in the same fashion using the identifiers (U) and (P) for
unpaired and paired bases, respectively. We call this the HIT representation (you don’t want to know what this
means). For example the following structure consists of 2 hairpins joined by a multiloop:

LG CCGe D)) GO, full structure (usual format);
(U) ((U2) ((U3)P3) (U2) ((U2)P2)P2) HIT structure;

(M) or

(@S (msS Yms coarse grained structure;
(CCC(H3)S3) ((H2)S2)M4)S2)E2) weighted coarse grained.

The program will continue to read new structures until a line consisting of the single character @ or an end of file
condition is encountered. Input lines neither containing a valid structure nor starting with > are ignored.

-h, --help
Print help and exit
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--detailed-help

Print help, including all details and hidden options, and exit
-V, --version

Print version and exit
-D, --distance=fhwcFHWCP

Specify the distance representation to be used in calculations.

(default="f")

Use the full, HIT, weighted coarse, or coarse representation to calculate the distance. Capital letters indicate
string alignment otherwise tree editing is used. Any combination of distances can bespecified.

-X, --compare=p|mlfic
Specify the comparison directive. (default="p”)

Possible arguments for this option are: -Xp compare the structures pairwise (p), i.e. first with 2nd, third
with 4th etc. -Xm calculate the distance matrix between all structures. The output is formatted as a lower
triangle matrix. -X£f compare each structure to the first one. -Xc compare continuously, that is i-th with
(i+1)th structure.

-S, --shapiro
Use the Bruce Shapiro’s cost matrix for comparing coarse structures.
(default=off)

-B, --backtrack[=<filename>]

Print an “alignment” with gaps of the structures, to show matching substructures. The aligned structures are
written to <filename>, if specified.

(default="none”)

If <filename> is not specified, the output is written to stdout, unless the -Xm option is set in which case
“backtrack.file” is used.

4.5.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

LL. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “‘Fast Folding and Comparison
of RNA Secondary Structures”’, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

B.A. Shapiro (1988), “An algorithm for comparing multiple RNA secondary structures” CABIOS: 4, pp 381-393

B.A. Shapiro, K. Zhang (1990), “Comparing multiple RNA secondary structures using tree comparison”, CABIOS:
6, pp 309-318

W. Fontana, D.A.M. Konings, P.F. Stadler and P. Schuster P (1993), “Statistics of RNA secondary structures”,
Biopolymers: 33, pp 1389-1404

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282
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4.5.4 AUTHOR

Walter Fontana, Ivo L Hofacker, Peter F Stadler

4.5.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.6 RNAdos
RNAdos - manual page for RNAdos 2.6.4

4.6.1 Synopsis

[RNAdos [OPTIONS] ]

4.6.2 DESCRIPTION

RNAdos 2.6.4
Calculate the density of states for each energy band of an RNA

The program reads an RNA sequence and computes the density of states for each energy band.

-h, --help
Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/0 Options:

Command line options for input and output (pre-)processing

-s, --sequence=STRING
The RNA sequence (ACGU).

-j, --numThreads=INT

Set the number of threads used for calculations (only available when compiled with OpenMP support)
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Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-e, --max-energy=INT
Structures are only counted until this threshold is reached. Default is O kcal/mol.
(default="0")

-b, --hashtable-bits=INT

Set the size of the hash table for each cell in the dp-matrices.

(default="20")

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files
-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")
-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.
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--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.6.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”’, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

J. Cupal, L.L. Hofacker, P.F. Stadler (1996), “Dynamic programming algorithm for the density of states of RNA
secondary structures” Computer Science and Biology 96, Proc. German Conf. on Bioinformatics 1996, pp. 184-
186.

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.6.4 AUTHOR

Gregor Entzian, Ronny Lorenz

4.6.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.6.6 SEE ALSO

RNAsubopt(1)

4.7 RNAduplex

RNAduplex - manual page for RNAduplex 2.6.4
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4.7.1 Synopsis

[RNAduplex [OPTION]...

4.7.2 DESCRIPTION

RNAduplex 2.6.4

Compute the structure upon hybridization of two RNA strands

reads two RNA sequences from stdin or <filename> and computes optimal and suboptimal secondary structures for
their hybridization. The calculation is simplified by allowing only inter-molecular base pairs, for the general case
use RNAcofold. The computed optimal and suboptimal structure are written to stdout, one structure per line. Each
line consist of: The structure in dot bracket format with a & separating the two strands. The range of the structure
in the two sequences in the format “from,to : from,to”; the energy of duplex structure in kcal/mol. The format is
especially useful for computing the hybrid structure between a small probe sequence and a long target sequence.

-h, --help
Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/0 Options:

Command line options for input and output (pre-)processing

-s, --sorted
Sort the printed output by free energy.

(default=off)
--noconv

Do not automatically substitute nucleotide “T”” with “U”.

(default=off)

Algorithms:

Select additional algorithms which should be included in the calculations.

-e, --deltaEnergy=range

Compute suboptimal structures with energy in a certain range of the optimum (kcal/mol). Default is calcu-

lation of mfe structure only.
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Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")

-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.

--saltInit=DOUBLE
Provide salt correction for duplex initialization (in kcal/mol).

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP
Produce structures without lonely pairs (helices of length 1).
(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.
(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.

(default=off)
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--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.

(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.

(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.7.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

L.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.7.4 AUTHOR

Ivo L Hofacker, Ronny Lorenz

4.7.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
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4.7.6 SEE ALSO

RNAcofold(1) RNAfold(l)

4.8 RNAeval

RNAeval - manual page for RNAeval 2.6.4

4.8.1 Synopsis

[RNAeval [OPTIONS] [<input®>] [<inputl>]...

4.8.2 DESCRIPTION

RNAeval 2.6.4
Determine the free energy of a (consensus) secondary structure for (an alignment of) RNA sequence(s)

Evaluates the free energy of a particular (consensus) secondary structure for an (an alignment of) RNA molecule(s).
The energy unit is kcal/mol and contains a covariance pseudo-energy term for multiple sequence alignments (--msa
option) and corresponding consensus structures. The program will continue to read new sequences and structures
until a line consisting of the single character @ or an end of file condition is encountered. If the input sequence
or structure contains the separator character & the program calculates the energy of the co-folding of two RNA
strands, where the & marks the boundary between the two strands.

-h, --help
Print help and exit
--detailed-help
Print help, including all details and hidden options, and exit
--full-help
Print help, including hidden options, and exit
-V, --version
Print version and exit
-v, --verbose

Print out energy contribution of each loop in the structure.

(default=off)

I/0 Options:

Command line options for input and output (pre-)processing
-i, --infile=filename
Read a file instead of reading from stdin.

The default behavior of RNAeval is to read input from stdin or the file(s) that follow(s) the RNAeval com-
mand. Using this parameter the user can specify input file names where data is read from. Note, that any
additional files supplied to RNAeval are still processed as well.
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-a, --msa

Input is multiple sequence alignment in Stockholm 1.0 format.

(default=off)
Using this flag indicates that the input is a multiple sequence alignment (MSA) instead of (a) single se-
quence(s). Note, that only STOCKHOLM format allows one to specify a consensus structure. Therefore,
this is the only supported MSA format for now!

--mis
Output “most informative sequence” instead of simple consensus: For each column of the alignment output
the set of nucleotides with frequency greater than average in [UPAC notation.

(default=off)
-j, --jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default="0")

Default processing of input data is performed in a serial fashion, i.e. one sequence at a time. Using this
switch, a user can instead start the computation for many sequences in the input in parallel. RNAeval will
create as many parallel computation slots as specified and assigns input sequences of the input file(s) to the
available slots. Note, that this increases memory consumption since input alignments have to be kept in mem-
ory until an empty compute slot is available and each running job requires its own dynamic programming
matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.
(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will most
likely not follow the order of the corresponding input data set. The default of RNAeval is to use a specialized
data structure to still keep the results output in order with the input data. However, this comes with a trade-
off in terms of memory consumption, since all output must be kept in memory for as long as no chunks of
consecutive, ordered output are available. By setting this flag, RNAeval will not buffer individual results but
print them as soon as they have been computated.

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)
--auto-id
Automatically generate an ID for each sequence. (default=off)

The default mode of RNAeval is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNAeval ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).
(default=""sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Note: Setting this parameter
implies --auto-id.
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--id-delim=CHAR
Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default="_")

This parameter can be used to change the default delimiter _ between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT
Specify the number of digits of the counter in automatically generated alignment IDs.
(default="4")

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id.

--id-start=LONG
Specify the first number in automatically generated IDs.
(default="1")

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

Algorithms:

Select additional algorithmic details which should be included in the calculations.
-c, --circ

Assume a circular (instead of linear) RNA molecule.

(default=off)
-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program
--shape=filename

Use SHAPE reactivity data to guide structure predictions.
--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default="D")

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.

D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapelMethod="D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
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like this: --shapeMethod="Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapeMethod="Dm1.9” or --shapelMethod="Db-0.7".

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

etal 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapeMethod="7b0.8").

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012.Perturbation vectors can be calculated by using RNApvmin.
--shapeConversion=method

Select method for SHAPE reactivity conversion.

(default="0")

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25”) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) 0: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")

-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.
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Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default for
mfe and partition function folding. The option -d® ignores dangling ends altogether (mostly for debugging).
With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the moment the
implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3.

--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT
Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--logML
Recalculate energies of structures using a logarithmic energy function for multi-loops before output.
(default=off)

This option does not effect structure generation, only the energies that are printed out. Since logML lowers
energies somewhat, some structures may be missing.

--cfactor=DOUBLE

Set the weight of the covariance term in the energy function
(default="1.0")

--nfactor=DOUBLE
Set the penalty for non-compatible sequences in the covariance term of the energy function

(default="1.0")

-R, --ribosum_file=ribosumfile
use specified Ribosum Matrix instead of normal

energy model.

Matrixes to use should be 6x6 matrices, the order of the terms is AU, CG, GC, GU, UA, UG.
-r, --ribosum_scoring

use ribosum scoring matrix. (default=off)

The matrix is chosen according to the minimal and maximal pairwise identities of the sequences in the file.
--old

use old energy evaluation, treating gaps as characters.

(default=off)
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--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FL.OAT

Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.8.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.8.4 AUTHOR

Ivo L Hofacker, Peter F Stadler, Ronny Lorenz

4.8.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.9 RNAfold

RNAfold - manual page for RNAfold 2.6.4
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4.9.1 Synopsis

[RNAfold [OPTIONS] [<input®.fa>] [<inputl.fa>]...

4.9.2 DESCRIPTION

RNAfold 2.6.4
Calculate minimum free energy secondary structures and partition function of RNAs

The program reads RNA sequences, calculates their minimum free energy (mfe) structure and prints the mfe struc-
ture in bracket notation and its free energy. If not specified differently using commandline arguments, input is
accepted from stdin or read from an input file, and output printed to stdout. If the -p option was given it also
computes the partition function (pf) and base pairing probability matrix, and prints the free energy of the thermo-
dynamic ensemble, the frequency of the mfe structure in the ensemble, and the ensemble diversity to stdout.

It also produces PostScript files with plots of the resulting secondary structure graph and a “dot plot” of the base
pairing matrix. The dot plot shows a matrix of squares with area proportional to the pairing probability in the upper
right half, and one square for each pair in the minimum free energy structure in the lower left half. For each pair
i-j with probability p>10E-6 there is a line of the form

ij sqrt(p) ubox
in the PostScript file, so that the pair probabilities can be easily extracted.

Sequences may be provided in a simple text format where each sequence occupies a single line. Output files are
named “rna.ps” and “dot.ps”. Existing files of the same name will be overwritten.

It is also possible to provide sequence data in FASTA format. In this case, the first word of the FASTA header
will be used as prefix for output file names. PostScript files “prefix_ss.ps” and “prefix_dp.ps” are produced for the
structure and dot plot, respectively. Note, however, that once FASTA input was provided all following sequences
must be in FASTA format too.

To avoid problems with certain operating systems and/or file systems the prefix will ALWAYS be sanitized! This
step substitutes any special character in the prefix by a filename delimiter. See the --filename-delim option to
change the delimiting character according to your requirements.

The program will continue to read new sequences until a line consisting of the single character @ or an end of file
(EOF) condition is encountered.

-h, --help
Print help and exit
--detailed-help
Print help, including all details and hidden options, and exit
--full-help
Print help, including hidden options, and exit
-V, --version
Print version and exit
-v, --verbose

Be verbose.

(default=off)
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I/0 Options:

Command line options for input and output (pre-)processing

-i, --infile=filename

Read a file instead of reading from stdin.

The default behavior of RNAfold is to read input from stdin or the file(s) that follow(s) the RNAfold com-
mand. Using this parameter the user can specify input file names where data is read from. Note, that any
additional files supplied to RNAfold are still processed as well.

-0, --outfile[=filename]

Print output to file instead of stdout.

This option may be used to write all output to output files rather than printing to stdout. The default filename
is “RNAfold_output.fold” if no FASTA header precedes the input sequences and the --auto-id feature is
inactive. Otherwise, output files with the scheme “prefix.fold” are generated, where the “prefix” is taken
from the sequence id, e.g. the FASTA header. The user may specify a single output file name for all data
generated from the input by supplying a filename as argument following immediately after this parameter.
In case a file with the same filename already exists, any output of the program will be appended to it. Note:
Any special characters in the filename will be replaced by the filename delimiter, hence there is no way to
pass an entire directory path through this option (yet). (See also the “~filename-delim” parameter)

-j, -—jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default="0")

Default processing of input data is performed in a serial fashion, i.e. one sequence at a time. Using this
switch, a user can instead start the computation for many sequences in the input in parallel. RNAfold will
create as many parallel computation slots as specified and assigns input sequences of the input file(s) to the
available slots. Note, that this increases memory consumption since input alignments have to be kept in mem-
ory until an empty compute slot is available and each running job requires its own dynamic programming
matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.

(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will most
likely not follow the order of the corresponding input data set. The default of RNAfold is to use a specialized
data structure to still keep the results output in order with the input data. However, this comes with a trade-
off in terms of memory consumption, since all output must be kept in memory for as long as no chunks of
consecutive, ordered output are available. By setting this flag, RNAfold will not buffer individual results but
print them as soon as they have been computated.

--noconv

Do not automatically substitute nucleotide “T”” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNAfold is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNAfold ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.
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--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).
(default=""sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_dp2.ps” (stack probabilities), etc. where xxxx is the sequence number. Note: Set-
ting this parameter implies --auto-id.

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default="_")

This parameter can be used to change the default delimiter ““_"" between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT
Specify the number of digits of the counter in automatically generated alignment IDs.
(default="4")

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id.

--id-start=LONG
Specify the first number in automatically generated IDs.

(default="1")

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR
Change the delimiting character used in sanitized filenames.

(default=""ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

--filename-full
Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001" without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).
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Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-p, —-partfunc[=INT]

Calculate the partition function and base pairing probability matrix.
(default="1")

In addition to the MFE structure we print a coarse representation of the pair probabilities in form of a pseudo
bracket notation followed by the ensemble free energy. This notation makes use of the letters ., ,, |, {, },
and ) denoting bases that are essentially unpaired, weakly paired, strongly paired without preference, weakly
upstream (downstream) paired, or strongly up- (down-)stream paired bases, respectively. On the next line
the centroid structure as derived from the pair probabilities together with its free energy and distance to the
ensemble is shown. Finally it prints the frequency of the mfe structure, and the structural diversity (mean
distance between the structures in the ensemble). See the description of vrna_pf() and mean_bp_dist()
and vrna_centroid() in the RNAIlib documentation for details. Note that unless you also specify -d2 or
-d@, the partition function and mfe calculations will use a slightly different energy model. See the discussion
of dangling end options below.

An additionally passed value to this option changes the behavior of partition function calculation: -p® Cal-
culate the partition function but not the pair probabilities, saving about 50% in runtime. This prints the
ensemble free energy dG=-kT 1n(Z). -p2 Compute stack probabilities, i.e. the probability that a pair (i,
j) and the immediately interior pair (i+1, j-1) are formed simultaneously in addition to pair probabilities.
A second postscript dot plot named “name_dp2.ps”, or “dot2.ps” (if the sequence does not have a name), is
produced that contains pair probabilities in the upper right half and stack probabilities in the lower left.

--betaScale=DOUBLE

Set the scaling of the Boltzmann factors. (default="1.")

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
factors then become exp (- dG/(kT*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state and T the absolute temperature.

-S, --p£fScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default="1.07")

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

--MEA[=gamma]

Compute MEA (maximum expected accuracy) structure.
(default="1.")

The expected accuracy is computed from the pair probabilities: each base pair (i, j) receives a score
2*gamma*p_ij and the score of an unpaired base is given by the probability of not forming a pair. The
parameter gamma tunes the importance of correctly predicted pairs versus unpaired bases. Thus, for small
values of gamma the MEA structure will contain only pairs with very high probability. Using --MEA implies
-p for computing the pair probabilities.

-c, --circ

Assume a circular (instead of linear) RNA molecule.

(default=off)

--ImFeelingLucky

Return exactly one stochastically backtracked structure.

(default=off)
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This function computes the partition function and returns exactly one secondary structure stochastically
sampled from the Boltzmann equilibrium according to its probability in the ensemble

--bppmThreshold=cutoff
Set the threshold/cutoff for base pair probabilities included in the postscript output.

(default=""1e-5")

By setting the threshold the base pair probabilities that are included in the output can be varied. By default
only those exceeding le-5 in probability will be shown as squares in the dot plot. Changing the threshold
to any other value allows for increase or decrease of data.

-g. --gquad
Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.
(default="-1")

-C, --constraint[=filename]

Calculate structures subject to constraints. (default="")

The program reads first the sequence, then a string containing constraints on the structure encoded with the
symbols:

. (no constraint for this base)

| (the corresponding base has to be paired

x (the base is unpaired)

< (base i is paired with a base j>i)

> (base i is paired with a base j<i)

and matching brackets ( ) (base i pairs base j)

With the exception of |, constraints will disallow all pairs conflicting with the constraint. This is usually
sufficient to enforce the constraint, but occasionally a base may stay unpaired in spite of constraints. PF
folding ignores constraints of type |.

--batch

Use constraints for multiple sequences. (default=off)

Usually, constraints provided from input file only apply to a single input sequence. Therefore, RNAfold
will stop its computation and quit after the first input sequence was processed. Using this switch, RNAfold
processes multiple input sequences and applies the same provided constraints to each of them.

--canonicalBPonly
Remove non-canonical base pairs from the structure constraint.
(default=off)

--enforceConstraint
Enforce base pairs given by round brackets ( ) in structure constraint.

(default=off)
--shape=filename
Use SHAPE reactivity data to guide structure predictions.
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--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default="D")

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.
D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapeMethod="D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
like this: --shapeMethod="Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapeMethod="Dm1.9” or --shapeMethod="Db-0.7".

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

etal 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapelMethod="7Zb0.8").

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012. Perturbation vectors can be calculated by using RNApvmin.

--shapeConversion=method

Select method for SHAPE reactivity conversion.
(default="0")

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25”) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) 0: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

--motif=SEQUENCE,STRUCTURE,ENERGY

Specify stabilizing energy of a ligand binding
to a particular sequence/structure motif.

Some ligands binding to RNAs require and/or induce particular sequence and structure motifs. For instance
they bind to an interior loop, or small hairpin loop. If for such cases a binding free energy is known, the
binding and therefore stabilizing effect of the ligand can be included in the folding recursions. Interior loop
motifs are specified as concatenations of 5°° and 3™ motif, separated by an & character.

Energy contributions must be specified in kcal/mol.

See the manpage for an example usage of this option.

--commands=filename

Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.
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Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")

-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.
--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.
-m, --modifications[=STRING]
Allow for modified bases within the RNA sequence string.
(default="716P9D”)

Treat modified bases within the RNA sequence differently, i.e. use corresponding energy corrections and/or
pairing partner rules if available. For that, the modified bases in the input sequence must be marked by
their corresponding one-letter code. If no additional arguments are supplied, all available corrections are
performed. Otherwise, the user may limit the modifications to a particular subset of modifications, resp.
one-letter codes, e.g. -mP6 will only correct for pseudouridine and m6A bases.

Currently supported one-letter codes and energy corrections are:
7: 7-deaza-adenonsine (7DA)
I: Inosine
6: N6-methyladenosine (m6A)
P: Pseudouridine
9: Purine (a.k.a. nebularine)
D: Dihydrouridine
--mod-file=STRING
Use additional modified base data from JSON file.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
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moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

Plotting:
Command line options for changing the default behavior of structure layout and pairing probability
plots

--noPS

Do not produce postscript drawing of the mfe structure.

(default=off)
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--noDP
Do not produce dot-plot postscript file containing base pair or stack probabilitities.
(default=off)

In combination with the -p option, this flag turns-off creation of individual dot-plot files. Consequently,
computed base pair probability output is omitted but centroid and MEA structure prediction is still per-
formed.

-t, --layout-type=INT
Choose the layout algorithm. (default="1")

Select the layout algorithm that computes the nucleotide coordinates. Currently, the following algorithms
are available:

0: simple radial layout

1: Naview layout (Bruccoleri et al. 1988)
2: circular layout

3: RNAturtle (Wiegreffe et al. 2018)

4: RNApuzzler (Wiegreffe et al. 2018)

4.9.3 REFERENCES
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and P. Stiegler. The partition function algorithm is based on work by J.S. McCaskill.

The energy parameters are taken from:
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D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
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4.9.4 EXAMPLES

Single line sequence input and calculation of partition function and MEA structure

[s RNAfold --MEA -d2 -p }

The program will then prompt for sequence input. Using the example sequence “CGACGTAGATGCTAGCT-
GACTCGATGC” and pressing ENTER the output of the program will be similar to

CGACGUAGAUGCUAGCUGACUCGAUGC

CCC. et D)) ...

minimum free energy = -1.90 kcal/mol

CCC. CCCCennn NP ...

free energy of ensemble = -2.86 kcal/mol

CC.C.CConnnnn. )).D))).... { 0.80 d=2.81}

CCC. CCCConnnnn. ))).)))).... { -1.90 MEA=22.32}

frequency of mfe structure in ensemble 0.20997; ensemble diversity 4.19

Here, the first line just repeats the sequence input. The second line contains a MFE structure in dot bracket notation
followed by the minimum free energy. After this, the pairing probabilities for each nucleotide are shown in a pseudo
dot-bracket notation followed by the free energy of ensemble. The next two lines show the centroid structure with
its free energy and its distance to the ensemble as well as the MEA structure, its free energy and the maximum
expected accuracy, respectively. The last line finally contains the frequency of the MFE representative in the
complete ensemble of secondary structures and the ensemble diversity. For further details about the calculation
and interpretation of the given output refer to the reference manual of RNAlib.

Since version 2.0 it is also possible to provide FASTA file sequence input. Assume you have a file containing two
sequences in FASTA format, e.g

$ cat sequences.fa

>seql
CGGCUCGCAACAGACCUAUUAGUUUUACGUAAUAUUUG
GAACGAUCUAUAACACGACUUCACUCUU

>seq2
GAAUGACCCGAUAACCCCGUAAUAUUUGGAACGAUCUA
UAACACGACUUCACUCUU

In order to compute the MFE for the two sequences the user can use the following command

[$ RNAfold < sequences.fa }

which would result in an output like this

>seql

CGGCUCGCAACAGACCUAUUAGUUUUACGUAAUAUUUGGAACGAUCUAUAACACGACUUCACUCUU
CCCCC . QL CeeCCameaann D)) e ))) ) e e ( -5.40)
>seq2

GAAUGACCCGAUAACCCCGUAAUAUUUGGAACGAUCUAUAACACGACUUCACUCUU

....... CCCC e D)) e e e e e ((-2.00)
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4.9.5 CONSTRAINT EXAMPLES

Secondary structure constraints may be given in addition to the sequence information, too. Using the first sequence
of the previous example and restricting the nucleotides of the outermost helix to be unpaired, i.e. base pairs (2,47)
and (3,46) the input file should have the following form

$ cat sequence_unpaired.fa

>seql
CGGCUCGCAACAGACCUAUUAGUUUUACGUAAUAUUUG
GAACGAUCUAUAACACGACUUCACUCUU

Calling RNAfold with the structure constraint option -C it shows the following result

$ RNAfold -C < sequence_unpaired.fa

>seql
CGGCUCGCAACAGACCUAUUAGUUUUACGUAAUAUUUGGAACGAUCUAUAACACGACUUCACUCUU
N (O (I DDDD DD D DD D D D ( -4.20)

This represents the minimum free energy and a structure representative of the RNA sequence given that nucleotides
2,3,46 and 47 must not be involved in any base pair. For further information about constrained folding refer to the
details of the -C option and the reference manual of RNAlib.

Since version 2.2 the ViennaRNA Package distinguishes hard and soft constraints. As a consequence, structure
predictions are easily amenable to a versatile set of constraints, such as maximal base pair span, incorporation of
SHAPE reactivity data, and RNA-ligand binding to hairpin, or interior loop motifs.

Restricting the maximal span of a base pair

A convenience commandline option allows you to easily limit the distance (j - i + 1) between two nucleotides i and
j that form a basepair. For instance a limit of 600nt can be accomplished using:

[$ RNAfold --maxBPspan 600 }

Guide structure prediction with SHAPE reactivity data

Use SHAPE reactivity data to guide secondary structure prediction:

[$ RNAfold --shape=reactivities.dat < sequence.fa }

where the file reactivities.dat is a two column text file with sequence positions (1-based) and normalized reactivity
values (usually between 0 and 2. Missing values may be left out, or assigned a negative score:

$ cat reactivities.dat

9 -999 # No reactivity information

10 -999

11 0.042816 # normalized SHAPE reactivity
12 0 # also a valid SHAPE reactivity

15 0.15027 # Missing data for pos. 13-14

42  0.16201

J

Note, that RNAfold will only process the first sequence in the input file, when provided with SHAPE reactivity
data!

Complex structure constraints and grammar extensions

Structure constraints beyond those that can be expressed with a pseudo-dot bracket notation may be provided in a
so-called command file:
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[$ RNAfold --commands=constraints.txt < sequence.fa

1

The command file syntax is a generalization of constraints as used in UNAfold/mfold. Each line starts with a
one or two letter command followed by command parameters. For structure constraints, this amounts to a single
command character followed by three or four numbers. In addition, optional auxiliary modifier characters may
be used to limit the constraint to specific loop types. For base pair specific constraints, we currently distinguish
pairs in exterior loops (E), closing pairs of hairpin loops (H), closing (I) and enclosed (i) pairs of interior loops,
and closing (M) and enclosed (m) pairs of multibranch loops. Nucleotide-wise constraints may be limited to their
loop context using the corresponding uppercase characters. The default is to apply a constraint to all (A) loop
types. Furthermore, pairing constraints for single nucleotides may be limited to upstream (U), or downstream (D)

orientation. The command file specification is as follows:

k [TYPE]

k [TYPE]

k [TYPE] Prohibit pairs (i,j),...,(i+k-1,j-k+1)
j k-1 [TYPE] Prohibit pairing between two ranges

k

k

k

k

(el BN NN e Wiav Biav Eav N Mo |
He He He He He He He e .
1
oW oUW LU O WL o

e
e
# m and binding free energy e

# [LOOP] ={E, H I, M, A}

# [TYPE] [LOOP] + { i, m }
# [ORIENTATION] = { U, D }

Remove pairs conflicting with (i,j7),...
Add pseudo-energy e to nucleotides i...
Add pseudo-energy e to pairs (i,j),...,
UD m e [LOOP] # Add ligand binding to unstructured domains with motif

#
#
#
#
[TYPE] # Nucleotides i,...,i+k-1 must appear in context TYPE
#
#
#

k [TYPE] [ORIENTATION] # Force nucleotides i...i+k-1 to be paired
Force helix of size k starting with (i,
Prohibit nucleotides i...i+k-1 to be paired

j) to be formed

, (i+k-1,j-k+1)
i+k-1
(i+k-1,j-k+1)

J

Again, RNAfold by default only processes the first sequence in the input sequence when provided with constraints
in a command file. To apply the exact same constraints to each of the input sequences in a multi FASTA file, use

the batch mode commandline option:

[$ RNAfold --constraint=constraints.txt --batch < sequences.fa

Ligand binding contributions to specific hairpin/interior loop motifs

A convenience function allows one to specify a hairping/interior loop motif where a ligand is binding with a partic-
ular binding free energy dG. Here is an example that adds a theophylline binding motif. Free energy contribution
of this motif of dG=-9.22kcal/mol is derived from k_d=0.32umol/l, taken from Jenison et al. 1994. Although the
structure motif consists of a symmetric interior loop of size 6, followed by a small helix of 3 basepairs, and a bulge
of 3 nucleotides, the entire structure can still be represented by one interior loop. See the below mofif description

where the & character splits the motif into a 5° and a 3’ part. The first line gives the sequences motif, the second

line shows the actual structure motif of the aptamer pocket, and the third line is the interior loop motif that fully

encapsulates the theophylline aptamer:

GAUACCAG&CCCUUGGCAGC
G (). ..)))...)
Coovnnn (€3 )

To use the above information in the folding recursions of RNAfold, one only needs to provide the motif itself, and

binding free energy:

[$ RNAfold --motif="GAUACCAG&CCCUUGGCAGC, (...((((&...)))...),-9.22" < sequences.fa

J

Adding the —verbose option to the above call of RNAfold also prints the sequence position of each motif found in
the MFE structure. In case interior-loop like motifs are provided, two intervals are printed denoting the 5°* and 3™

part, respectively.

Ligand binding contributions to unpaired segments of the RNA structure
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The extension of the RNA folding grammar with unstructured domains allows for an easy incorporation of ligands
that bind to unpaired stretches of an RNA structure. To model such interactions only two parameters are required:
(i) a sequence motif in [UPAC notation that specifies where the ligand binds to, and (ii) a binding free energy that
can be derived from the association/dissociation constant of the ligand. With these two parameters in hand, the
modification of RNAfold to include the competition of regular intramolecular base pairing and ligand interaction
is as easy as writing a simple command file of the form:

[UD m e [LOOP]

where m is the motif string in upper-case IUPAC notation, and e the binding free energy in kcal/mol and optional
loop type restriction [LOOP]. See also the command file specification as defined above.

For instance, having a protein with a 4-nucleotide footprint binding AAAA, a binding free energy e = -5.0 kcal/mol,
and a binding restriction to exterior- and multibranch loops results in a command file:

$ cat commands.txt
UD AAAA -5.0 ME

and the corresponding call to RNAfold to compute MFE and equilibrium probabilities becomes:

[$ RNAfold --commands=commands.txt -p < sequence.fa J

The resulting MFE plot will be annotated to display the binding site(s) of the ligand, and the base pair probability
dot-plot is extended to include the probability that a particular nucleotide is bound by the ligand.

4.9.6 POST-TRANSCRIPTIONAL MODIFICATION EXAMPLES

Many RNA molecules harbor (post-transcriptional) modifications. These modified base often change the pairing
behavior or energy contribution for the loops they are part of. To accommodate for that effect (to a certain degree)
one may use additional correcting energy parameters for loops with the respective modified bases. In literature,
a few stacking- and some terminal mismatch energies can be found. Some of them are already provided within
the ViennaRNA Package. The —modification and -mod-file command line parameters can be used to apply these
parameters in the predictions. While the former allows one to select a subset of implemented modified base correc-
tions, the latter enables the prediction programs to read energy parameters for modified bases from a user-provided
JSON file.

Consider, for instance, the following tRNA sequence with dihydrouridines and pseudouridines annotated by their
respective one-letter codes D and P:

§ cat tRNAphe.fa
>tRNAphe
GCCGAAAUAGCUCAGDDGGGAGAGCGPPAGACUGAAGAPCUAAAGGDCCCUGGUPCGAUCCCGGGUUUCGGCACCA

Now, a prediction that includes support for the destabilizing effect of D and the stabilizing effects of P within base
pair stacks can be done as follows:

$ RNAfold --modifications=DP < tRNAphe.fa

>tRNAphe
GCCGAAAUAGCUCAGDDGGGAGAGCGPPAGACUGAAGAPCUAAAGGDCCCUGGUPCGAUCCCGGGUUUCGGCACCA
CCCCCCC. - CCCCannnnnnn 2))) . CCCCCannnnn )DDD) N € (G ( e DI ... (-23.37)
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4.9.7 AUTHOR

Ivo L Hofacker, Walter Fontana, Sebastian Bonhoeffer, Peter F Stadler, Ronny Lorenz

4.9.8 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.10 RNAheat
RNAheat - manual page for RNAheat 2.6.4

4.10.1 Synopsis

[RNAheat [OPTIONS] [<input®>] [<inputl>]...

4.10.2 DESCRIPTION

RNAheat 2.6.4
calculate specific heat of RNAs

Reads RNA sequences from stdin or input files and calculates their specific heat in the temperature range t1 to t2,
from the partition function by numeric differentiation. The result is written to stdout as a list of pairs of temperature
in C and specific heat in kcal/(mol*K). The program will continue to read new sequences until a line consisting of
the single character @ or an end of file condition is encountered.

-h, --help
Print help and exit
--detailed-help
Print help, including all details and hidden options, and exit

--full-help
Print help, including hidden options, and exit

-V, --version

Print version and exit

I/0 Options:

Command line options for input and output (pre-)processing
-1, --infile=filename
Read a file instead of reading from stdin
The default behavior of RNAheat is to read input from stdin or the file(s) that follow(s) the RNAheat com-

mand. Using this parameter the user can specify input file names where data is read from. Note, that any
additional files supplied to RNAheat are still processed as well.
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-j, -—-jobs[=number]
Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.
(default="0")

Default processing of input data is performed in a serial fashion, i.e. one sequence at a time. Using this
switch, a user can instead start the computation for many sequences in the input in parallel. RNAheat will
create as many parallel computation slots as specified and assigns input sequences of the input file(s) to the
available slots. Note, that this increases memory consumption since input alignments have to be kept in mem-
ory until an empty compute slot is available and each running job requires its own dynamic programming
matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.

(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will most
likely not follow the order of the corresponding input data set. The default of RNAheat is to use a specialized
data structure to still keep the results output in order with the input data. However, this comes with a trade-
off in terms of memory consumption, since all output must be kept in memory for as long as no chunks of
consecutive, ordered output are available. By setting this flag, RNAheat will not buffer individual results but
print them as soon as they have been computated.
--noconv

Do not automatically substitute nucleotide “T”” with “U”.

(default=off)
--auto-id
Automatically generate an ID for each sequence. (default=off)

The default mode of RNAheat is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNAheat ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.

--id-prefix=STRING
Prefix for automatically generated IDs (as used in output file names)
(default=""sequence”)

If this parameter is set, each sequences’ FASTA id will be prefixed with the provided string. FASTA ids then
take the form “>prefix_xxxx” where xxxx is the sequence number. Note: Setting this parameter implies
--auto-1id.

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default="_")

This parameter can be used to change the default delimiter ““_" between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT
Specify the number of digits of the counter in automatically generated alignment IDs.
(default="4")

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
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this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id.

--id-start=LONG
Specify the first number in automatically generated alignment IDs.
(default="1")

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

Algorithms:

Select additional algorithms which should be included in the calculations.
--Tmin=t1
Lowest temperature.
(default="0")
--Tmax=t2
Highest temperature.
(default="100")
--stepsize=FLOAT
Calculate partition function every stepsize degrees C.
(default="1.")
-m, —--ipoints=ipoints

The program fits a parabola to 2*ipoints+1 data points to calculate 2nd derivatives. Increasing this parameter
produces a smoother curve.

(default="2")

-c, --circ
Assume a circular (instead of linear) RNA molecule.
(default=off)

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default="-1")
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Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters
-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops
(default="2")
With -d2 dangling energies will be added for the bases adjacent to a helix on both sides in any case
.HP -d® ignores dangling ends altogether (mostly for debugging).
--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.
(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT
Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.
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--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FL.OAT

Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.10.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.10.4 AUTHOR

Ivo L Hofacker, Peter F Stadler, Ronny Lorenz

4.10.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.10.6 SEE ALSO

RNAfold(1)
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4.11 RNAinverse

RNAinverse - manual page for RNAinverse 2.6.4

4.11.1 Synopsis

[RNAinverse [OPTION]...

4.11.2 DESCRIPTION

RNAinverse 2.6.4
Find RNA sequences with given secondary structure

The program searches for sequences folding into a predefined structure, thereby inverting the folding algorithm.
Target structures (in bracket notation) and starting sequences for the search are read alternately from stdin. Char-
acters in the start sequence other than “AUGC” (or the alphabet specified with -a) will be treated as wild cards
and replaced by a random character. Any lower case characters in the start sequence will be kept fixed during the
search. If necessary, the sequence will be elongated to the length of the structure. Thus a string of “N”’s as well as
a blank line specify a random start sequence. For each search the best sequence found and its Hamming distance
to the start sequence are printed to stdout. If the the search was unsuccessful, a structure distance to the target is
appended. The -Fp and -R options can modify the output format, see commandline options below. The program
will continue to read new structures and sequences until a line consisting of the single character “@” or an end of
file condition is encountered.

-h, --help
Print help and exit
--detailed-help
Print help, including all details and hidden options, and exit
--full-help
Print help, including hidden options, and exit
-V, --version
Print version and exit
-v, --verbose

In conjunction with a negative value supplied to -R, print the last subsequence and substructure for each
unsuccessful search.

(default=off)

Algorithms:

Select additional algorithms which should be included in the calculations.
-F, --function=mp

Use minimum energy (-Fm), partition function folding (-Fp) or both (-Fmp).

(default="m”

In partition function mode, the probability of the target structure exp(-E" (S)/kT)/Q is maximized.
This probability is written in brackets after the found sequence and Hamming
distance. In most cases you'll want to use the :option:-f option in conjunction with -Fp,
see below.
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-f, --final=FLOAT

In combination with -Fp stop search when sequence is found with E(s)-F is smaller than final, where F=-
kT*In(Q).

-R, --repeat[=INT]

Search repeatedly for the same structure. If an argument is supplied to this option it must follow the option
flag immediately. E.g.: -R5

(default="1")

If repeats is negative search until --repeats exact solutions are found, no output is done for unsuccessful
searches. Be aware, that the program will not terminate if the target structure can not be found. If no value
is supplied with this option, the default value is used.

-a, --alphabet=ALPHABET

Find sequences using only nucleotides from a given alphabet.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default="37.0")

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. When passing the placeholder file name “DNA”, DNA param-
eters are loaded without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)
Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.
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--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-”” then AB will
imply that AB and BA are allowed pairs. e.g. RNAfold -nsp -GA will allow GA and AG pairs. Nonstandard
pairs are given 0O stacking energy.

-e, --energyModel=INT
Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.11.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

D.H. Turner, N. Sugimoto, S.M. Freier (1988), “RNA structure prediction”, Ann Rev Biophys Biophys Chem: 17,
pp 167-192

M. Zuker, P. Stiegler (1981), “Optimal computer folding of large RNA sequences using thermodynamic and aux-
iliary information”, Nucl Acid Res: 9, pp 133-148

J.S. McCaskill (1990), “The equilibrium partition function and base pair binding probabilities for RNA secondary
structures”, Biopolymers: 29, pp 1105-1119

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292
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D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.11.4 EXAMPLES

To search 5 times for sequences forming a simple hairpin structure interrupted by one GA mismatch call

[$ RNAinverse -R 5 J

and enter the lines

(CC.CCC- 2222300
NNNgNNNNNNNNNNaNNN

4.11.5 AUTHOR

Ivo L Hofacker

4.11.6 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.12 RNALalifold
RNALalifold - manual page for RNALalifold 2.6.4

4.12.1 Synopsis

[RNALalifold [options] <filel.aln> }

4.12.2 DESCRIPTION

RNALalifold 2.6.4
calculate locally stable secondary structures for a set of aligned RNAs

reads aligned RNA sequences from stdin or file.aln and calculates locally stable RNA secondary structure with a
maximal base pair span. For a sequence of length n and a base pair span of L the algorithm uses only O(n+L*L)
memory and O(n*L*L) CPU time. Thus it is practical to “scan” very large genomes for short RNA

structures.
-h, --help
Print help and exit
--detailed-help
Print help, including all details and hidden options, and exit

--full-help
Print help, including hidden options, and exit

-V, --version

Print version and exit
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-v, --verbose

Be verbose.

(default=off)
-q, --quiet
Be quiet. (default=off)

This option can be used to minimize the output of additional information and non-severe warnings which
otherwise might spam stdout/stderr.

I/0 Options:

Command line options for input and output (pre-)processing

-f, --input-format=C|S|F]M
File format of the input multiple sequence alignment (MSA).
If this parameter is set, the input is considered to be in a particular file format. Otherwise, the program
tries to determine the file format automatically, if an input file was provided in the set of parameters. In
case the input MSA is provided in interactive mode, or from a terminal (TTY), the programs default is to
assume CLUSTALW format. Currently, the following formats are available: ClustalW (C), Stockholm 1.0
(S), FASTA/Pearson (F), and MAF (M).

--Csv

Create comma separated output (csv)

(default=off)

--aln[=prefix]
Produce output alignments and secondary structure plots for each hit found.
This option tells the program to produce, for each hit, a colored and structure annotated (sub)alignment and
secondary structure plot in PostScript format. It also adds the subalignment hit into a multi-Stockholm
formatted file “RNALalifold_results.stk”. The postscript output file names are “aln_start_end.eps” and

“ss_start_end.eps”. All files will be created in the current directory. The optional argument string can
be used to set a specific prefix that is used to name the output files. The file names then become “pre-

ERINTS

fix_aln_start_end.eps”, “prefix_ss_start_end.eps”, and “prefix.stk”. Note: Any special characters in the pre-
fix will be replaced by the filename delimiter, hence there is no way to pass an entire directory path through
this option yet. (See also the “—filename-delim” parameter)

--aln-stk[=prefix]
Add hits to a multi-Stockholm formatted output file.

(default="RNALalifold_results”)

The default file name used for the output is “RNALalifold_results.stk”. Users may change the filename to
“prefix.stk” by specifying the prefix as optional argument. The file will be create in the current directory
if it does not already exist. In case the file already exists, output will be appended to it. Note: Any special
characters in the prefix will be replaced by the filename delimiter, hence there is no way to pass an entire
directory path through this option yet. (See also the “~filename-delim” parameter)
--mis

Output “most informative sequence” instead of simple consensus: For each column of the alignment output
the set of nucleotides with frequency greater than average in [UPAC notation.

(default=off)
--split-contributions

Split the free energy contributions into separate parts

(default=off)
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By default, only the total energy contribution for each hit is returned. Using this option, this contribution
is split into individual parts, i.e. the Nearest Neighbor model energy, the covariance pseudo energy, and if
applicable, a remaining pseudo energy derived from special constraints, such as probing signals like SHAPE.

--noconv

Do not automatically substitute nucleotide “T”” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each alignment.

(default=off)

The default mode of RNALalifold is to automatically determine an ID from the input alignment if the input
file format allows to do that. Alignment IDs are, for instance, usually given in Stockholm 1.0 formatted input.
If this flag is active, RNALalifold ignores any IDs retrieved from the input and automatically generates an
ID for each alignment.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).
(default="alignment”)

If this parameter is set, each alignment will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_aln.ps” (annotated alignment), etc. where xxxx is the alignment number beginning
with the second alignment in the input. Use this setting in conjunction with the --continuous-ids flag to
assign IDs beginning with the first input alignment.

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default=""_"")

This parameter can be used to change the default delimiter “_" between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.
(default="4")

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18].

--id-start=LONG

Specify the first number in automatically generated alignment IDs.
(default="1")

When alignment IDs are automatically generated, they receive an increasing number, usually starting with
1. Using this parameter, the first number can be specified to the users requirements. Note: negative num-
bers are not allowed. Note: Setting this parameter implies continuous alignment IDs, i.e. it activates the
--continuous-1ids flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.
(default=""ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
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characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-L, --maxBPspan=INT
Set the maximum allowed separation of a base pair to span. L.e. no pairs (i,j) with j-i>span will be allowed.
(default="70")

--threshold=DOUBLE
Energy threshold in kcal/mol per nucleotide above which secondary structure hits are omitted in the output.
(default="-0.1")

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--shape=filel,file2
Use SHAPE reactivity data to guide structure predictions.

Multiple shapefiles for the individual sequences in the alignment may be specified as a comma separated list.
An optional association of particular shape files to a specific sequence in the alignment can be expressed by
prepending the sequence number to the filename, e.g. “5=seq5.shape,3=seq3.shape” will assign the reactivity
values from file seq5.shape to the fifth sequence in the alignment, and the values from file seq3.shape to
sequence 3. If no assignment is specified, the reactivity values are assigned to corresponding sequences in
the order they are given.

--shapeMethod=D[mX][bY]

Specify the method how to convert SHAPE reactivity data to pseudo energy contributions.
(default="D")

Currently, the only data conversion method available is that of to Deigan et al 2009. This method is the
default and is recognized by a capital D in the provided parameter, i.e.: --shapeMethod="D" is the default
setting. The slope m and the intercept b can be set to a non-default value if necessary. Otherwise m=1.8
and b=-0.6 as stated in the paper mentionen before. To alter these parameters, e.g. m=1.9 and b=-0.7, use
a parameter string like this: --shapeMethod="Dm1.9b-0.7”. You may also provide only one of the two
parameters like: --shapeMethod="Dm1.9” or --shapeMethod="Db-0.7".
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Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")

-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)
Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP
Produce structures without lonely pairs (helices of length 1).
(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.

(default=off)
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--cfactor=DOUBLE
Set the weight of the covariance term in the energy function
(default="1.0")
--nfactor=DOUBLE
Set the penalty for non-compatible sequences in the covariance term of the energy function
(default="1.0")
-R, --ribosum_file=ribosumfile
use specified Ribosum Matrix instead of normal
energy model.
Matrixes to use should be 6x6 matrices, the order of the terms is AU, CG, GC, GU, UA, UG.
-r, --ribosum_scoring
use ribosum scoring matrix. (default=off)
The matrix is chosen according to the minimal and maximal pairwise identities of the sequences in the file.
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given O stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots

--aln-EPS[=prefix]

Produce colored and structure annotated subalignment for each hit.

The default file name used for the output is “aln_start_end.eps” where “start” and “end” denote the first
and last column of the subalignment relative to the input (1-based). Users may change the filename to
“prefix_aln_start_end.eps” by specifying the prefix as optional argument. Files will be create in the current
directory. Note: Any special characters in the prefix will be replaced by the filename delimiter, hence there
is no way to pass an entire directory path through this option yet. (See also the “~filename-delim” parameter)
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--aln-EPS-cols=INT

Number of columns in colored EPS alignment output.
(default="60")
A value less than 1 indicates that the output should not be wrapped at all.

--aln-EPS-ss[=prefix]

Produce colored consensus secondary structure plots in PostScript format.

The default file name used for the output is “ss_start_end.eps” where “start” and “end” denote the first
and last column of the subalignment relative to the input (1-based). Users may change the filename to
“prefix_ss_start_end.eps” by specifying the prefix as optional argument. Files will be create in the current
directory. Note: Any special characters in the prefix will be replaced by the filename delimiter, hence there
is no way to pass an entire directory path through this option yet. (See also the “—filename-delim” parameter)

4.12.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

I.L. Hofacker, B. Priwitzer, and P.F. Stadler (2004), “Prediction of Locally Stable RNA Secondary Structures for
Genome-Wide Surveys”, Bioinformatics: 20, pp 186-190

Stephan H. Bernhart, Ivo L. Hofacker, Sebastian Will, Andreas R. Gruber, and Peter F. Stadler (2008), “RNAalifold:
Improved consensus structure prediction for RNA alignments”, BMC Bioinformatics: 9, pp 474

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.12.4 AUTHOR

Ivo L Hofacker, Ronny Lorenz

4.12.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
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4.13 RNALfold

RNALfold - manual page for RNALfold 2.6.4

4.13.1 Synopsis

[RNALfold [OPTION]...

4.13.2 DESCRIPTION

RNALfold 2.6.4
calculate locally stable secondary structures of RNAs

Compute locally stable RNA secondary structure with a maximal base pair span. For a sequence of length n and
a base pair span of L the algorithm uses only O(n+L*L) memory and O(n*L*L) CPU time. Thus it is practical to
“scan” very large genomes for short RNA structures. Output consists of a list of secondary structure components
of size <= L, one entry per line. Each output line contains the predicted local structure its energy in kcal/mol and
the starting position of the local structure.

-h, --help
Print help and exit
--detailed-help

Print help, including all details and hidden options, and exit

--full-help
Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/0 Options:

Command line options for input and output (pre-)processing

-i, --infile=filename

Read a file instead of reading from stdin

The default behavior of RNALfold is to read input from stdin. Using this parameter the user can specify an
input file name where data is read from.

-0, --outfile[=filename]

Print output to file instead of stdout.

This option may be used to write all output to output files rather than printing to stdout. The number of
output files created for batch input (multiple sequences) depends on three conditions: (i) In case an optional
filename is given as parameter argument, a single file with the specified filename will be written into. If the
optional argument is omitted, (ii) FASTA input or an active --auto-id switch will write to multiple files
that follow the naming scheme “prefix.lfold”. Here, “prefix” is taken from the sequence id as specified in the
FASTA header. Lastly, (iii) single-line sequence input without FASTA header will be written to a single file
“RNALSfold_output.lfold”. In case an output file already exists, any output of the program will be appended
to it. Since the filename argument is optional, it must immediately follow the short option flag to not be
mistaken as new parameter to the program. For instance “-ornafold.out™™ will write to a file “rnafold.out”.
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Note: Any special characters in the filename will be replaced by the filename delimiter, hence there is no
way to pass an entire directory path through this option yet. (See also the “~filename-delim” parameter)

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id

Automatically generate an ID for each sequence. (default=off)

The default mode of RNALfold is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNALfold ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).
(default=""sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx.lfold” where xxxx is the sequence number. Note: Setting
this parameter implies --auto-id.

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default="_")

This parameter can be used to change the default delimiter ““_" between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.
(default="4")

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id.

--id-start=LONG

Specify the first number in automatically generated IDs.
(default="1")

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.
(default=""ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.
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--filename-full
Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001" without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-L, --span=INT
Set the maximum distance between any two pairing nucleotides.
(default="150")
This option specifies the window length L and therefore the upper limit for the distance between the bases i
and j of any pair (i, j),i.e. j-i+ 1) <=L.
-z, --zscore[=DOUBLE]
Limit the output to predictions with a Z-score below a threshold.
(default="-2")

This option activates z-score regression using a trained SVM. Any predicted structure that exceeds the spec-
ified threshold will be ommited from the output. Since the Z-score threshold is given as a negative number,
it must immediately preceed the short option to not be mistaken as a separate argument, e.g. -z-2.9 sets the
threshold to a value of -2.9

--zscore-pre-filter
Apply the z-score filtering in the forward recursions.
(default=off)

The default mode of z-score filtering considers the entire structure space to decide whether or not a locally
optimal structure at any position i is reported or not. When using this post-filtering step, however, alternative
locally optimal structures

starting at i with higher energy but lower z-score can be easily missed. The
pre-filter

option restricts the structure space already in the forward recursions, such
that

only optimal solution among those candidates that satisfy the z-score

threshold are considered. Therefore, good results according to the z-score threshold criterion are less likely
to be superseded by results with better energy but worse z-score. Note, that activating this switch results in
higher computation time which scales linear in the window length.

--zscore-report-subsumed
Report subsumed structures if their z-score is less than that of the enclosing structure.

(default=off)

In default mode, RNALfold only reports locally optimal structures if they are no constituents of another,
larger structure with less free energy. In z-score mode, however, such a larger structure may have a higher
z-score, thus may be less informative than the smaller substructure. Using this switch activates reporting
both, the smaller and the larger structure if the z-score of the smaller is lower than that of the larger.
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-b, --backtrack-global

Backtrack a global MFE structure. (default=off)

Instead of just reporting the locally stable secondary structure a global MFE structure can be constructed
that only consists of locally optimal substructures. This switch activates a post-processing step that takes the
locally optimal structures to generate the global MFE structure which constitutes the MFE value reported
in the last line. The respective global MFE structure is printed just after the inut sequence part on the last
line, preceding the global MFE score. Note, that this option implies -o/—outfile since the locally optimal
structures must be read after the regular prediction step! Also note, that using this option in combination with
-z/-zscore implies --zscore-pre-filter to ensure proper construction of the global MFE structure!

-g, --gquad

Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--shape=filename

Use SHAPE reactivity data to guide structure predictions.

--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default="D")

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.
D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapelMethod="D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
like this: --shapeMethod="Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapelMethod="Dm1.9” or --shapelMethod="Db-0.7".

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

etal 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapeMethod="7b0.8").

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012. Perturbation vectors can be calculated by using RNApvmin.

--shapeConversion=method

Select method for SHAPE reactivity conversion.
(default="0")

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25”) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) 0: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)
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--commands=filename

Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files
-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")
-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.
--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.
-m, --modifications[=STRING]
Allow for modified bases within the RNA sequence string.
(default="716P9D")

Treat modified bases within the RNA sequence differently, i.e. use corresponding energy corrections and/or
pairing partner rules if available. For that, the modified bases in the input sequence must be marked by
their corresponding one-letter code. If no additional arguments are supplied, all available corrections are
performed. Otherwise, the user may limit the modifications to a particular subset of modifications, resp.
one-letter codes, e.g. -mP6 will only correct for pseudouridine and m6A bases.

Currently supported one-letter codes and energy corrections are:
7: 7-deaza-adenonsine (7DA)
I: Inosine
6: N6-methyladenosine (m6A)
P: Pseudouridine
9: Purine (a.k.a. nebularine)
D: Dihydrouridine
--mod-file=STRING
Use additional modified base data from JSON file.
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Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.
(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.
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4.13.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

I.L. Hofacker, B. Priwitzer, and P.F. Stadler (2004), “Prediction of Locally Stable RNA Secondary Structures for
Genome-Wide Surveys”, Bioinformatics: 20, pp 186-190

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.13.4 AUTHOR

Ivo L Hofacker, Peter F Stadler, Ronny Lorenz

4.13.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.13.6 SEE ALSO

RNAplfold(1) RNALalifold(1)
4.14 RNAmultifold
RNAmultifold - manual page for RNAmultifold 2.6.4

4.14.1 Synopsis

[RNAmultifold [OPTION]... [FILE]...
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4.14.2 DESCRIPTION

RNAmultifold 2.6.4

Compute secondary structures of multiple interacting RNAs

The program works much like RNAfold, but allows one to specify multiple RNA sequences which are then allowed
to form conncected components. RNA sequences are read from stdin in the usual format, i.e. each line of input
corresponds to one sequence, except for lines starting with “>” which contain the name of the next sequence(s).
Multiple strands must be concatenated using the *“& ™ character as separator. RNAmultifold can compute MFE,
partition function, corresponding ensemble free energy and base pairing probabilities. These properties are either
computed for a particular arrangement (concatenation) of sequences, for the full ensemble of the complex of input
RNAs, or all complexes formed by the input sequences up to a specified number of interacting sequences. Output
consists of a PostScript “dot plot” file containing the pair probabilities, see the RNAfold man page for details.
The program will continue to read new sequences until a line consisting of the single character @ or an end of file
condition is encountered.

-h, --help

Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/0 Options:

Command line options for input and output (pre-)processing

-j, -—jobs[=number]

Split batch input into jobs and start processing in parallel using multiple threads. A value of 0 indicates to
use as many parallel threads as computation cores are available.

(default="0")

Default processing of input data is performed in a serial fashion, i.e. one sequence pair at a time. Using this
switch, a user can instead start the computation for many sequence pairs in the input in parallel. RNAmul-
tifold will create as many parallel computation slots as specified and assigns input sequences of the input
file(s) to the available slots. Note, that this increases memory consumption since input alignments have to
be kept in memory until an empty compute slot is available and each running job requires its own dynamic
programming matrices.

--unordered

Do not try to keep output in order with input while parallel processing is in place.

(default=off)

When parallel input processing (--jobs flag) is enabled, the order in which input is processed depends on
the host machines job scheduler. Therefore, any output to stdout or files generated by this program will most
likely not follow the order of the corresponding input data set. The default of RNAmultifold is to use a
specialized data structure to still keep the results output in order with the input data. However, this comes
with a trade-off in terms of memory consumption, since all output must be kept in memory for as long as
no chunks of consecutive, ordered output are available. By setting this flag, RNAmultifold will not buffer
individual results but print them as soon as they have been computated.
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--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id
Automatically generate an ID for each sequence. (default=off)
The default mode of RNAmultifold is to automatically determine an ID from the input sequence data if the
input file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences.
If this flag is active, RNAmultifold ignores any IDs retrieved from the input and automatically generates an
ID for each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to
add a FASTA header to the output even if the input has none.

--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).
(default=""sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_dp2.ps” (stack probabilities), etc. where xxxx is the sequence number. Note: Set-
ting this parameter implies --auto-id.

--id-delim=CHAR
Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).
(default="_")

This parameter can be used to change the default delimiter “_" between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT
Specify the number of digits of the counter in automatically generated alignment IDs.

(default="4")

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id.

--id-start=LONG
Specify the first number in automatically generated IDs.

(default="1")

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-1id flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.
(default=""ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.
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--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001" without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

-p, --partfunc[=INT]

Calculate the partition function and base pairing probability matrix in addition to the MFE structure. Default
is calculation of mfe structure only.

(default="1")

In addition to the MFE structure we print a coarse representation of the pair probabilities in form of a pseudo
bracket notation, followed by the ensemble free energy. Note that unless you also specify -d2 or -d®, the
partition function and mfe calculations will use a slightly different energy model. See the discussion of
dangling end options below.

An additionally passed value to this option changes the behavior of partition function calculation:
In order to calculate the partition function but not the pair probabilities
use the -p® option and save about

50% in runtime. This prints the ensemble free energy dG=-kT 1n(Z).

-a, --all_p£f[=INT]

Compute the partition function and free energies not only for the complex formed by the input sequences
(the “ABC... mutimer”), but also of all complexes formed by the input sequences up to the number of input
sequences, e.2. AAA, AAB, ABB, BBB, etc.

(default="1")

The output will contain the free energies for each of these species. Using -a automatically switches on the
-p option.

-c, --concentrations

In addition to everything listed under the -a option, read in initial monomer concentrations and compute the
expected equilibrium concentrations of all possible species (A, B, AA, BB, AB, etc).

(default=off)

Start concentrations are read from stdin (unless the - option is used) in [mol/1], equilibrium concentrations
are given realtive to the sum of the inputs. An arbitrary number of initial concentrations can be specified
(one tuple of concentrations per line).

-f, --concfile=filename

Specify a file with initial concentrations for the input sequences.

The table consits of arbitrary many lines with multiple numbers separated by whitespace (the concentration
of the input sequences A, B, C, etc.). This option will automatically toggle the -c (and thus -a and -p)
options (see above).
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--absolute-concentrations Report absolute instead of relative
concentrations
(default=off)

--betaScale=DOUBLE
Set the scaling of the Boltzmann factors. (default="1.")

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
factors then become exp (- dG/(kT*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state and T the absolute temperature.

-S, --pfScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default="1.07")
The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

--bppmThreshold=cutoff
Set the threshold/cutoff for base pair probabilities included in the postscript output.

(default=""1e-5")

By setting the threshold the base pair probabilities that are included in the output can be varied. By default
only those exceeding le-5 in probability will be shown as squares in the dot plot. Changing the threshold
to any other value allows for increase or decrease of data.

-9, --gquad
Incoorporate G-Quadruplex formation into the structure prediction algorithm.

(default=off)

Note, only intramolecular G-quadruplexes are considered.

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.
(default="-1")

--commands=filename
Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.

(default="37.0")
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-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP
Produce structures without lonely pairs (helices of length 1).
(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0O stacking energy.

-e, --energyModel=INT
Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.
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--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FL.OAT

Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.14.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.14.4 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.15 RNApain
RNApaln - manual page for RNApaln 2.6.4

4.15.1 Synopsis

[RNApaln [OPTION]... ]
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4.15.2 DESCRIPTION

RNApaln 2.6.4
RNA alignment based on sequence base pairing propensities

Uses string-alignment techniques to perform fast pairwise structural alignments of RNAs. Similar to RNApdist
secondary structure is incorporated in an approximate manner by computing base pair probabilities, which are
then reduced to a vector holding the probability that a base is paired upstream, downstream, or remains unpaired.
Such pair propsensity vectors can then be compared using standard alignment algorithms. In contrast to RNApdist,
RNApaln performs similarity (instead of distance) alignments, considers both sequence and structure information,
and uses affine (rather than linear) gap costs. RNApaln can perform semi-local alignments by using free end gaps,
a true local alignment mode is planned.

The same approach has since been used in the Stral. program from Gerhard Steeger’s group. Since StralL has
optimized parameters and a multiple alignment mode, it be be currently the better option.

-h, --help
Print help and exit

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/0 Options:

Command line options for input and output (pre-)processing

-B, --printAlignment[=filename]
Print an “alignment” with gaps of the

profiles

The aligned structures are written to filename, if specified Otherwise output is written to stdout, unless the
-Xm option is set in which case “backtrack.file” is used.

(default=""stdout”)

The following symbols are used:

) essentially upstream (downstream) paired bases

} weakly upstream (downstream) paired bases

strongly paired bases without preference

weakly paired bases without preference

essentially unpaired bases.

--noconv

Do not automatically substitute nucleotide “T”” with “U”.

(default=off)

134 Chapter 4. Manpages



ViennaRNA, Release 2.6.4

Algorithms:

Select additional algorithms which should be included in the calculations.

-X, --mode=pmfc

Set the alignment mode to be used.

The alignment mode is passed as a single character value. The following options are available: p - Compare
the structures pairwise, that is first with 2nd, third with 4th etc. This is the default.

ENENEURNEN

m

 Calculate the distance matrix between all structures. The output is

formatted as a lower triangle matrix.

f - Compare each structure to the first one.

¢ - Compare continuously, that is i-th with (i+1)th structure.
--gapo=open

Set the gap open penalty
--gape=ext

Set the gap extension penalty
--seqw=w

Set the weight of sequence (compared to structure) in the scoring function.
--endgaps

Use free end-gaps

(default=off)

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files
-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")
-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. When passing the placeholder file name “DNA”, DNA param-
eters are loaded without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.
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Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.
(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-”” then AB will
imply that AB and BA are allowed pairs. e.g. RNAfold -nsp -GA will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT
Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.
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4.15.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

Bonhoeffer S, McCaskill J S, Stadler P F, Schuster P (1993), “RNA multi-structure landscapes”, Euro Biophys J:
22, pp 13-24

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.15.4 AUTHOR

Peter F Stadler, Ivo L Hofacker, Sebastian Bonhoeffer

4.15.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.16 RNAparconv
RNAparconv - manual page for RNAparconv 2.6.4

4.16.1 Synopsis

[RNAparconv [options] [<input file>] [<output file>]

4.16.2 DESCRIPTION

RNAparconv 2.6.4
Convert energy parameter files from ViennaRNA 1.8.4 to 2.0 format

Converts energy parameter files from “old” ViennaRNAPackage 1.8.4 format to the new format used since Vien-
naRNAPackage 2.0. The Program reads a valid energy parameter file or valid energy parameters from stdin and
prints the converted energy parameters to stdout or a specified output file. Per default, the converted output file
contains the whole set of energy parameters used throughout ViennaRNAPackage 1.8.4. The user can specify sets
of energy parameters that should not be included in the output.

-h, --help
Print help and exit
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--full-help
Print help, including hidden options, and exit
-V, --version

Print version and exit

I/0 Options:

Command line options for input and output (pre-)processing
-i, --input=filename

Specify an input file name. If argument is missing the energy parameter input can be supplied via stdin.
-0, --output=filename

Specify an output file name. If argument is missing the converted energy parameters are printed to stdout.
--vanilla

Print just as much as needed to represent the given energy parameters data set. This option overrides all
other output settings!

(default=off)
--dump

Just dump Vienna 1.8.4 energy parameters in format used since 2.0. This option skips any energy parameter
input!

(default=off)
--silent

Print just energy parameters and appropriate comment lines but suppress all other output
(default=off)
--without-HairpinE
Do not print converted hairpin energies and enthalpies
(default=off)
--without-StackE

Do not print converted stacking energies and enthalpies
(default=off)

--without-IntE
Do not print converted interior loop energies, enthalpies and asymetry factors
(default=off)

--without-BulgeE
Do not print converted bulge loop energies and enthalpies
(default=off)

--without-MultiE
Do not print converted multi loop energies and enthalpies
(default=off)

--without-MismatchE

Do not print converted exterior loop mismatch energies and enthalpies

(default=off)
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--without-MismatchH

Do not print converted hairpin mismatch energies and enthalpies

(default=off)

--without-MismatchI
Do not print converted interior loop mismatch energies and enthalpies
(default=off)

--without-MismatchM
Do not print converted multi loop mismatch energies and enthalpies
(default=off)

--without-Dangle5
Do not print converted 5’ dangle energies and enthalpies
(default=off)

--without-Dangle3
Do not print converted 3’ dangle energies and enthalpies
(default=off)

--without-Misc

Do not print converted Misc energies and enthalpies (Terminal AU, DuplexInit, 1xc)

(default=off)

4.16.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”’, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.16.4 AUTHOR

Ronny Lorenz
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4.16.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.17 RNApdist
RNApdist - manual page for RNApdist 2.6.4

4.17.1 Synopsis

[RNApdist [OPTION] ...

4.17.2 DESCRIPTION

RNApdist 2.6.4
Calculate distances between thermodynamic RNA secondary structures ensembles

This program reads RNA sequences from stdin and calculates structure distances between the thermodynamic
ensembles of their secondary structures.

To do this the partition function and matrix of base pairing probabilities is computed for each sequence. The
probability matrix is then condensed into a vector holding for each base the probabilities of being unpaired, paired
upstream, or paired downstream, respectively. These profiles are compared by a standard alignment algorithm.

The base pair probabilities are also saved as postscript “dot plots” (as in RNAfold) in the files “name_dp.ps”, where
name is the name of the sequence, or a number if unnamed.

-h, --help
Print help and exit
--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/0 Options:

Command line options for input and output (pre-)processing

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)
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Algorithms:

Select additional algorithms which should be included in the calculations.
-X, --compare=p|mlfic
Specity the comparison directive. (default="p”)

Possible arguments for this option are: -Xp compare the structures pairwise (p), i.e. first with 2nd, third
with 4th etc. -Xm calculate the distance matrix between all structures. The output is formatted as a lower
triangle matrix. -X£f compare each structure to the first one. -Xc compare continuously, that is i-th with
(i+1)th structure.

-B, --backtrack[=<filename>]

Print an “alignment” with gaps of the profiles. The aligned structures are written to <filename>, if specified.
(default="none”
Within the profile output, the following symbols will be used:

0

essentially upstream (downstream) paired bases

{1

weakly upstream (downstream) paired bases

strongly paired bases without preference

weakly paired bases without preference

essentially unpaired bases.
If <filename> is not specified, the output is written to stdout, unless the

“-Xm” option is set in which case “backtrack.file” is used.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files
-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")
-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. When passing the placeholder file name “DNA”, DNA param-
eters are loaded without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.

4.17. RNApdist 141



ViennaRNA, Release 2.6.4

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters
-d, --dangles=INT
set energy model for treatment of dangling bases.

(possible values="0", “2” default="2")
--nolLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-”” then AB will
imply that AB and BA are allowed pairs. e.g. RNAfold -nsp -GA will allow GA and AG pairs. Nonstandard
pairs are given O stacking energy.

-e, --energyModel=INT
Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.
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4.17.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

S. Bonhoeffer, J.S. McCaskill, P.F. Stadler, P. Schuster (1993), “RNA multi-structure landscapes”, Euro Biophys
J:22, pp 13-24

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.17.4 AUTHOR

Peter F Stadler, Ivo L Hofacker, Sebastian Bonhoeffer.

4.17.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.18 RNAPKplex
RNAPKplex - manual page for RNAPKplex 2.6.4

4.18.1 Synopsis

[RNAPKplex [OPTION]...

4.18.2 DESCRIPTION

RNAPKplex 2.6.4
predicts RNA secondary structures including pseudoknots

Computes RNA secondary structures by first making two sequence intervals accessible and unpaired using the
algorithm of RNAplfold and then calculating the energy of the interaction of those two intervals. The algorithm
uses O(n"2*w”4) CPU time and O(n*w”2) memory space. The algorithm furthermore always considers dangle=2
model.

It also produces a PostScript file with a plot of the pseudoknot-free secondary structure graph, in which the bases
forming the pseuodknot are marked red.

Sequences are read in a simple text format where each sequence occupies a single line. Each sequence may be
preceded by a line of the form .. code:
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[> name

to assign a name to the sequence. If a name is given in the input, the PostScript file “name.ps” is produced for
the structure graph. Other- wise the file name defaults to PKplex.ps. Existing files of the same name will be
overwritten. The input format is similar to fasta except that even long sequences may not be interrupted by line
breaks, and the header lines are optional. The program will continue to read new sequences until a line consisting
of the single character @ or an end of file condition is encountered.

-h, --help
Print help and exit
--detailed-help
Print help, including all details and hidden options, and exit
--full-help
Print help, including hidden options, and exit
-V, --version
Print version and exit
-v, --verbose

Be verbose.

(default=off)

I/0 Options:

Command line options for input and output (pre-)processing
--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

Algorithms:

Select additional algorithms which should be included in the calculations.
-c, --cutoff=FLOAT
Report only base pairs with an average probability > cutoff in the dot plot.
(default="0.01")
-e, --energyCutoff=DOUBLE

Energy cutoff or pseudoknot initiation cost. Minimum energy gain of a pseudoknot interaction for it to be
returned. Pseudoknots with smaller energy gains are rejected.

(default="-8.10")
-s, --subopts=DOUBLE

print suboptimal structures whose energy difference of the pseudoknot to the optimum pseudoknot is smaller
than the given value.

(default="0.0")

NOTE: The final energy of a structure is calculated as the sum of the pseudoknot interaction energy, the
penalty for initiating a pseudoknot and the energy of the pseudoknot-free part of the structure. The -s
option only takes the pseudoknot interaction energy into account, so the final energy differences may be
bigger than the specified value (default=0.).
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Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files
-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")
-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.

(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.
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--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.18.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”’, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.18.4 AUTHOR

Wolfgang Beyer

4.18.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.19 RNAplex
RNAplex - manual page for RNAplex 2.6.4

4.19.1 Synopsis

[RNAplex [options]
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4.19.2 DESCRIPTION

RNAplex 2.6.4
Find targets of a query RNA

reads two RNA sequences from stdin or <filename> and computes optimal and suboptimal secondary structures
for their hybridization. The calculation is simplified by allowing only inter-molecular base pairs. Accessibility
effects can be estimated by RNAplex if a RNAplfold accessibility profile is provided. The computed optimal and
suboptimal structure are written to stdout, one structure per line. Each line consist of: The structure in dot bracket
format with a “&” separating the two strands. The range of the structure in the two sequences in the format “from,to
: from,to”; the energy of duplex structure in kcal/mol. The format is especially useful for computing the hybrid
structure between a small probe sequence and a long target sequence.

-h, --help

Print help and exit
--detailed-help

Print help, including all details and hidden options, and exit
--full-help

Print help, including hidden options, and exit

--version

Print version and exit

I/0 Options:

Command line options for input and output (pre-)processing
-q, --query=STRING
File containing the query sequence.

Input sequences can be given piped to RNAplex or given in a query file with the -g option. Note that the -q
option implies that the -t option is also used

-t, --target=STRING
File containing the target sequence.

Input sequences can be given piped to RNAplex or given in a target file with the -t option. Note that the -t
option implies that the -q option is also used

-a, --accessibility-dir=STRING
Location of the accessibility profiles.

This option switches the accessibility modes on and indicates in which directory accessibility profiles as
generated by RNAplfold can be found

-b, --binary
Allow the reading and parsing of memory dumped opening energy file
(default=off)
The -b option allows one to read and process opening energy files which are saved in binary format
This can reduce by a factor of 500x-1000x the time needed to process those

files. RNAplex recognizes the corresponding opening energy files by looking for files named after the se-
quence and containing the suffix _openen_bin. Please look at the man page of RNAplfold if you need more
information on how to produce binary opening energy files.
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Algorithms:

Options which alter the computing behaviour of RNAplex.
-1, --interaction-length=INT

Maximal length of an interaction (default="40")

Maximal allowed length of an interaction

-c, -—extension-cost=INT
Cost to add to each nucleotide in a duplex (default="0")

Cost of extending a duplex by one nucleotide. Allows one to find compact duplexes, having few/small
bulges or interior loops Only useful when no accessibility profiles are available. This option is disabled if
accessibility profiles are used (-a option)

-p, --probe-mode
Compute Tm for probes (default=off)
Use this option if you want to compute the melting temperature of your probes
-Q, --probe-concentration=DOUBLE
Set the probe concentration for the Tm
computation
(default="0.1")
-N, --na-concentration=DOUBLE Set the Na+ concentration for the Tm
computation.
(default="1.0")
-M, --mg-concentration=DOUBLE Set the Mg2+ concentration for the Tm
computation.
(default="1.0")
-K, --k-concentration=DOUBLE
Set the K+ concentration for the Tm computation.
(default="1.0")
-U, --tris-concentration=DOUBLE
Set the tris+ concentration for the Tm
computation.
(default="1.0")
-f, --fast-folding=INT
Speedup of the target search (default="0")

This option allows one to decide if the backtracking has to be done (-f 0, -f 2) or not (-f 1). For -£ 0
the structure is computed based on the standard energy model. This is the slowest and most precise mode of
RNAplex. With -f 2, the structure is computed based on the approximated plex model. If a lot of targets
are returned this is can greatly improve the runtime of RNAplex. -f 1 is the fastest mode, as no structure
are recomputed

-V, --scale-accessibility=DOUBLE

Rescale all opening energy by a factor V
(default="1.0")

Scale-factor for the accessibility. If V is set to 1 then the scaling has no effect on the accessibility.
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-A, --alignment-mode

Tells RNAplex to compute interactions based on alignments

(default=off)

If the A option is set RNAplex expects clustalw files as input for the -g and -t option.
-k, --convert-to-bin

If set, RNAplex will convert all opening energy file in a directory set by the -a option into binary opening
energy files

(default=off)

RNAplex can be used to convert existing text formatted opening energy files into binary formatted files. In
this mode RNAplex does not compute interactions.

-z, --duplex-distance=INT
Distance between target 3’ ends of two consecutive duplexes
(default="0")

Distance between the target 3’ends of two consecutive duplexes. Should be set to the maximal length of
interaction to get good results

Smaller z leads to larger overlaps between consecutive duplexes.

-e, --energy-threshold=DOUBLE Minimal energy for a duplex to be returned
(default="-100000")

Energy threshold for a duplex to be returned. The threshold is set on the total energy of interaction, i.e. the
hybridization energy corrected for opening energy if -a is set or the energy corrected by -c. If unset, only
the mfe will be returned

-L, --WindowLength=INT
Tells how large the region around the target site should be for redrawing the alignment interaction

(default="1")

This option allows one to specify how large the region surrounding the target site should be set when gener-
ating the alignment figure of the interaction

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

-C, --constraint

Calculate structures subject to constraints. (default=off)

The program reads first the sequence, then a string containing constraints on the structure for the query
sequence encoded with the symbols: . (no constraint for this base) | (the corresponding base has to be
paired)

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default="37.0")
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-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. When passing the placeholder file name “DNA”, DNA param-
eters are loaded without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)
Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

--saltInit=DOUBLE

Provide salt correction for duplex initialization (in kcal/mol).

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

--helical-rise=FLOAT

Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT

Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots

-I, --produce-ps=STRING

Draw an alignment annotated interaction from RNAplex.

This option allows one to produce interaction figures in PS-format a la RNAalifold, where base-pair con-
servation is represented in color-coded format. In this mode no interaction are computed, but the -I option
indicates the location of the file containing interactions between two RNA (alignments/sequence) from a
previous run. If the -A option is not set a structure figure a la RNAfold with color-coded annotation of the
accessibilities is returned
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4.19.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The calculation of duplex structure is based on dynamic programming algorithm originally developed by
Rehmsmeier and in parallel by Hofacker.

H. Tafer and I.L. Hofacker (2008), “RNAplex: a fast tool for RNA-RNA interaction search.”, Bioinformatics:
24(22), pp 2657-2663

S. Bonhoeffer, J.S. McCaskill, P.F. Stadler, P. Schuster (1993), “RNA multi-structure landscapes”, Euro Biophys
J: 22, pp 13-24

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.19.4 AUTHOR

Hakim Tafer, Ivo L. Hofacker

4.19.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.20 RNApifold
RNAplfold - manual page for RNAplfold 2.6.4

4.20.1 Synopsis

[RNAplfold [OPTION] ...
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4.20.2 DESCRIPTION

RNAplfold 2.6.4
calculate locally stable secondary structure - pair probabilities

Computes local pair probabilities for base pairs with a maximal span of L. The probabilities are averaged over all
windows of size L that contain the base pair. For a sequence of length n and a window size of L the algorithm
uses only O(n+L*L) memory and O(n*L*L) CPU time. Thus it is practical to “scan” very large genomes for short
stable RNA structures.

Output consists of a dot plot in postscript file, where the averaged pair probabilities can easily be parsed and visually
inspected.

The -u option makes i possible to compute the probability that a stretch of x consequtive nucleotides is unpaired,
which is useful for predicting possible binding sites. Again this probability is averaged over all windows containing
the region.

.B WARNING! Output format changed!!

The output is a plain text matrix containing on each line a position i followed by the probability that i is unpaired,
[i-1..i] is unpaired [i-2..i] is unpaired and so on to the probability that [i-x+1..i] is unpaired.

-h, --help
Print help and exit
--detailed-help
Print help, including all details and hidden options, and exit
--full-help
Print help, including hidden options, and exit
-V, --version
Print version and exit

-v, --verbose

Be verbose.

(default=off)

I/0 Options:

Command line options for input and output (pre-)processing
-c, --cutoff=FLOAT
Report only base pairs with an average probability larger than cuto£ff in the dot plot.
(default="0.01")
-0, --print_onthefly
Save memory by printing out everything during computation.
(default=off)
NOTE: activated per default for sequences over 1M bp.
-0, --opening_energies
Switch output from probabilities to their logarithms.
(default=off)

This is NOT exactly the mean energies needed to unfold the respective stretch of bases! (implies --ulength
option).
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--plex_output
Create additional output files for RNAplex.

(default=off)
-b, --binaries
Output accessibility profiles in binary format. (default=off)
The binary files produced by RNAplfold do not need to be parsed by RNAplex,

so that they are directly loaded into memory. This is useful when large sequences have to be searched for
putative hybridization sites. Another advantage of the binary format is the 50% file size decrease.
--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

--auto-id
Automatically generate an ID for each sequence. (default=off)
The default mode of RNAplfold is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNAplfold ignores any IDs retrieved from the input and automatically generates an ID for
each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.

--id-prefix=STRING
Prefix for automatically generated IDs (as used in output file names).

(default=""sequence”)

If this parameter is set, each sequences’ FASTA id will be prefixed with the provided string. FASTA ids
then take the form “>prefix_xxxx” where xxxx is the sequence number. Hence, the output files will obey
the following naming scheme: “prefix_xxxx_dp.ps” (dot-plot), “prefix_xxxx_lunp” (unpaired probabilities),
etc. Note: Setting this parameter implies --auto-id.

--id-delim=CHAR
Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).
(default="_")
This parameter can be used to change the default delimiter “_" between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT
Specify the number of digits of the counter in automatically generated alignment IDs.
(default="4")

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id.

--id-start=LONG
Specify the first number in automatically generated IDs.
(default="1")

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-1id flag.
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--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.
(default=""ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001" without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).

Algorithms:

Select and change parameters of (additional) algorithms which should be included in the calculations.

-W, --winsize=size

Average the pair probabilities over windows of given size.

(default="70")

-L, --span=size

Set the maximum allowed separation of a base pair to span.

By setting the maximum base pair span no pairs (i,j) with j-i > span will be allowed. Defaults to winsize if
parameter is omitted.

-u, --ulength=length

Compute the mean probability that regions of length 1 to a given length are unpaired.
(default="31")

Output is saved in a _lunp file.

--betaScale=DOUBLE

Set the scaling of the Boltzmann factors. (default="1.")

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
factors then become exp (- dG/(kT*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state and T the absolute temperature.

-S, --p£Scale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default="1.07")

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.
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Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--shape=filename
Use SHAPE reactivity data to guide structure predictions.

--shapeMethod=method
Select SHAPE reactivity data incorporation strategy.

(default="D")
The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.
D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapeMethod="D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
like this: --shapeMethod="Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapelMethod="Dm1.9” or --shapeMethod="Db-0.7".

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

etal 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapelethod="7b0.8").

W: Apply a given vector of perturbation energies to unpaired nucleotides
according to Washietl et al 2012. Perturbation vectors can be calculated by using RNApvmin.

--shapeConversion=method
Select method for SHAPE reactivity conversion.

(default="0")

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) 0: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

--commands=filename

Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.
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Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")

-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.
--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.
-m, --modifications[=STRING]
Allow for modified bases within the RNA sequence string.
(default="716P9D”)

Treat modified bases within the RNA sequence differently, i.e. use corresponding energy corrections and/or
pairing partner rules if available. For that, the modified bases in the input sequence must be marked by
their corresponding one-letter code. If no additional arguments are supplied, all available corrections are
performed. Otherwise, the user may limit the modifications to a particular subset of modifications, resp.
one-letter codes, e.g. -mP6 will only correct for pseudouridine and m6A bases.

Currently supported one-letter codes and energy corrections are:
7: 7-deaza-adenonsine (7DA)
I: Inosine
6: N6-methyladenosine (m6A)
P: Pseudouridine
9: Purine (a.k.a. nebularine)
D: Dihydrouridine
--mod-file=STRING
Use additional modified base data from JSON file.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters
-d, --dangles=INT

Specify “dangling end”” model for bases adjacent to helices in free ends and multi-loops.

(default="2")

With -d2 dangling energies will be added for the bases adjacent to a helix on both sides in any case while
-d® ignores dangling ends altogether (mostly for debugging).
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--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

-e, --energyModel=INT
Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.20.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

L.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”’, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

S. H. Bernhart, U. Mueckstein, and I.L. Hofacker (2011), “RNA Accessibility in cubic time”, Algorithms Mol
Biol. 6: 3.

S. H. Bernhart, I.L. Hofacker, and P.F. Stadler (2006), “Local Base Pairing Probabilities in Large RNAs”, Bioin-
formatics: 22, pp 614-615
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D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.20.4 AUTHOR

Stephan H Bernhart, Ivo L Hofacker, Peter F Stadler, Ronny Lorenz

4.20.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.

4.20.6 SEE ALSO

RNALfold(1)
4.21 RNAplot
RNAplot - manual page for RNAplot 2.6.4

4.21.1 Synopsis

[RNAplot [OPTIONS] [<input®>] [<inputl>]...

4.21.2 DESCRIPTION

RNAplot 2.6.4
Draw RNA Secondary Structures

The program reads (aligned) RNA sequences and structures in the format as produced by RNAfold or Stockholm
1.0 and produces drawings of the secondary structure graph. Coordinates for the structure graphs are produced
using either E. Bruccoleri’s naview routines, or a simple radial layout method. For aligned sequences and consensus
structures (--msa option) the graph may be annotated by covariance information. Additionally, a color-annotated
EPS alignment figure can be produced, similar to that obtained by RNAalifold and RNALalifold. If the sequence
was preceded by a FASTA header, or if the multiple sequence alignment contains an ID field, these IDs will be
taken as names for the output file(s): “name_ss.ps” and “name_aln.ps”. Otherwise “rna.ps” and “aln.ps” will be
used. This behavior may be over-ruled by explicitly setting a filename prefix using the --auto-id option. Existing
files of the same name will be overwritten.

-h, --help
Print help and exit

--detailed-help
Print help, including all details and hidden options, and exit
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--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/0 Options:

Command line options for input and output (pre-)processing

-1, --infile=<filename>
Read a file instead of reading from stdin.
The default behavior of RNAplot is to read input from stdin or the file(s) that follow(s) the RNAplot com-
mand. Using this parameter the user can specify input file names where data is read from. Note, that any
additional files supplied to RNAplot are still processed as well.

-a, --msa
Input is multiple sequence alignment in Stockholm 1.0 format. (default=off)
Using this flag indicates that the input is a multiple sequence alignment (MSA) instead of (a) single se-
quence(s). Note, that only STOCKHOLM format allows one to specify a consensus structure. Therefore,
this is the only supported MSA format for now!

--mis
Output “most informative sequence” instead of simple consensus (default=off)
For each column of the alignment output this is the set of nucleotides with frequency greater than average in
TUPAC notation.

-j, --jobs[=number]
Split batch input into jobs and start processing in parallel using multiple threads. (default="0")
Default processing of input data is performed in a serial fashion, i.e. one sequence at a time. Using this
switch, a user can instead start the computation for many sequences in the input in parallel. RNAplot will
create as many parallel computation slots as specified and assigns input sequences of the input file(s) to the
available slots. Note, that this increases memory consumption since input alignments have to be kept in mem-
ory until an empty compute slot is available and each running job requires its own dynamic programming
matrices. A value of 0 indicates to use as many parallel threads as computation cores are available.

-0, —-output-format=ps|gml|xrnalsvg
Specify output format. (default="ps”

Available formats are: PostScript (ps), Graph Meta Language (gml), Scalable Vector Graphics (svg), and
XRNA save file (xrna). Output filenames will end in “.ps” “.gml” “.svg” “.ss”, respectively.

99 <

--pre=string
Add annotation macros to postscript file, and add the postscript code in “string” just before the code to draw
the structure. This is an easy way to add annotation.

--post=string
Same as --pre but in contrast to adding the annotation macros. E.g to mark position 15 with circle use
--post="15 cmark”.

--auto-id
Automatically generate an ID for each sequence. (default=off)
The default mode of RNAfold is to automatically determine an ID from the input sequence data if the input
file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences. If
this flag is active, RNAfold ignores any IDs retrieved from the input and automatically generates an ID for

each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add a
FASTA header to the output even if the input has none.
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--id-prefix=STRING

Prefix for automatically generated IDs (as used in output file names).
(default=""sequence”)

If this parameter is set, each sequence will be prefixed with the provided string. Hence, the output files will
obey the following naming scheme: “prefix_xxxx_ss.ps” (secondary structure plot), “prefix_xxxx_dp.ps”
(dot-plot), “prefix_xxxx_dp2.ps” (stack probabilities), etc. where xxxx is the sequence number. Note: Set-
ting this parameter implies --auto-id.

--id-delim=CHAR

Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default="_")

This parameter can be used to change the default delimiter ““_"" between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT

Specify the number of digits of the counter in automatically generated alignment IDs.
(default="4")

When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id.

--id-start=LONG

Specify the first number in automatically generated IDs.
(default="1")

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.
(default=""ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001" without the additional data available
in the FASTA header, e.g. “NM_0001_ss.ps” for secondary structure plots. With this flag set, no truncation
of the output filenames is done, i.e. output filenames receive the full FASTA header data as prefixes. Note,
however, that invalid characters (such as whitespace) will be substituted by a delimiting character or simply
removed, (see also the parameter option --filename-delim).
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Plotting:
Command line options for changing the default behavior of structure layout and pairing probability
plots

--covar

Annotate covariance of base pairs in consensus structure.

(default=off)
--aln

Produce a colored and structure annotated alignment in PostScript format in the file “aln.ps” in the current
directory.

(default=off)
--aln-EPS-cols=INT

Number of columns in colored EPS alignment output.

(default="60")

A value less than 1 indicates that the output should not be wrapped at all.
-t, --layout-type=INT

Choose the plotting layout algorithm. (default="1")

Select the layout algorithm that computes the nucleotide coordinates. Currently, the following algorithms
are available:

0: simple radial layout

1: Naview layout (Bruccoleri et al. 1988)

2: circular layout

3: RNAturtle (Wiegreffe et al. 2018)

4: RNApuzzler (Wiegreffe et al. 2018)
--noOptimization

Disable the drawing space optimization of RNApuzzler.

(default=off)
--ignoreExteriorIntersections

Ignore intersections with the exterior loop

within the RNA-tree.

(default=off)
--ignoreAncestorIntersections

Ignore ancestor intersections within the

RNA-tree.

(default=off)
--ignoreSiblingIntersections

Ignore sibling intersections within the

RNA-tree.

(default=off)
--allowFlipping

Allow flipping of exterior loop branches to resolve exterior branch intersections.

(default=off)
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4.21.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.21.4 AUTHOR

Ivo L Hofacker, Ronny Lorenz

4.21.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.22 RNApvmin
RNApvmin - manual page for RNApvmin 2.6.4

4.22.1 Synopsis

[RNApvmin [options] <file.shape>

4.22.2 DESCRIPTION

RNApvmin 2.6.4
Calculate a perturbation vector that minimizes discripancies between predicted and observed pairing probabilities

The program reads a RNA sequence from stdin and uses an iterative minimization process to calculate a perturba-
tion vector that minimizes the discripancies between predicted pairing probabilites and observed pairing probabil-
ities (deduced from given shape reactivities). Experimental data is read from a given SHAPE file and normalized
to pairing probabilities. The experimental data has to be provided in a multiline plain text file where each line
has the format [position] [nucleotide] [absolute shape reactivity] (e.g. 3 A 0.7). The objective
function used for the minimization may be weighted by choosing appropriate values for sigma and tau.

The minimization progress will be written to stderr. Once the minimization has terminated, the obtained perturba-
tion vector is written to stdout.

-h, --help
Print help and exit
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--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/0 Options:

Command line options for input and output (pre-)processing

-j, --numThreads=INT
Set the number of threads used for calculations.

Algorithms:

Select additional algorithms which should be included in the calculations. The Minimum free energy
(MFE) and a structure representative are calculated in any case.

--shapeConversion=STRING
Specify the method used to convert SHAPE reactivities to pairing probabilities.
(default="0")

The following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide
to be unpaired.

M: Use linear mapping according to Zarringhalam et al. 2012
C: Use a cutoff-approach to divide into paired and unpaired nucleotides (e.g. “C0.25”)

S: Skip the normalizing step since the input data already represents probabilities for being unpaired rather
than raw reactivity values

L: Use a linear model to convert the reactivity into a probability for being unpaired (e.g. “Ls0.68i0.2” to use
a slope of 0.68 and an intercept of 0.2)

0: Use a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-
2.29” to use a slope of 1.6 and an intercept of -2.29)

--tauSigmaRatio=DOUBLE
Ratio of the weighting factors tau and sigma. (default="1.0")

A high ratio will lead to a solution as close as possible to the experimental data, while a low ratio will lead
to results close to the thermodynamic prediction without guiding pseudo energies.

--objectiveFunction=INT

The energies of the perturbation vector and the discripancies between predicted and observed pairing prob-
abilities contribute to the objective function. This parameter defines, which function is used to process the
contributions before summing them up. 0 square 1 absolute.

(default="0")
--sampleSize=INT
The iterative minimization process requires to evaluate the gradient of the objective function.

(default="1000")

A sample size of 0 leads to an analytical evaluation which scales as O(N*4). Choosing a sample size >0
estimates the gradient by sampling the given number of sequences from the ensemble, which is much faster.
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-N, --nonRedundant

Enable non-redundant sampling strategy.

(default=off)
--intermediatePath=STRING Write an output file for each iteration of the

minimization process.

Each file contains the used perturbation vector and the score of the objective function. The number of the
iteration will be appended to the given path.

--initialVector=DOUBLE
Specify the vector of initial pertubations. (default="0")

Defines the initial perturbation vector which will be used as starting vector for the minimization process. The
value O results in a null vector. Every other value x will be used to populate the initial vector with random
numbers from the interval [-x,X].

--minimizer=ENUM
Set the minimizing algorithm used for finding an appropriate perturbation vector.

(possible values="conjugate_fr",

“conjugate_pr”, “vector_bfgs”, “vector_bfgs2”, “steepest_descent”, “default” default="default”)

The default option uses a custom implementation of the gradient descent algorithms while all other options
represent various algorithms implemented in the GNU Scientific Library. When the GNU Scientific Library
can not be found, only the default minimizer is available.

--initialStepSize=DOUBLE
The initial stepsize for the minimizer methods.
(default="0.01")
--minStepSize=DOUBLE

The minimal stepsize for the minizimer methods.
(default="1e-15")

--minTmprovement=DOUBLE

The minimal improvement in the default minizimer method that has to be surpassed to considered a new
result a better one.

(default=""1e-3")

--minimizerTolerance=DOUBLE

The tolerance to be used in the GSL minimizer
methods.
(default=""1e-3")

-S, --p£Scale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default="1.07")

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.
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Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default="-1")

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE

Rescale energy parameters to a temperature of temp C. Default is 37C.

(default="37.0")

-P, --paramFile=paramfile

Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra

Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.

(default=off)
Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT

How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

4.22. RNApvmin 165



ViennaRNA, Release 2.6.4

--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given O stacking energy.

-e, --energyModel=INT
Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.22.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

S. Washietl, I.L. Hofacker, P.F. Stadler, M. Kellis (2012) “RNA folding with soft constraints: reconciliation of
probing data and thermodynamics secondary structure prediction” Nucl Acids Res: 40(10), pp 4261-4272

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282
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4.22.4 EXAMPLES

RNApvmin acceptes a SHAPE file and a corresponding nucleotide sequence, which is read form stdin.

[RNApvmin sequence.shape < sequence.fasta > sequence.pv }

The normalized SHAPE reactivity data has to be stored in a text file, where each line contains the position and the
reactivity for a certain nucleotide ([position] [nucleotide] [SHAPE reactivity]).

1 A 1.286
2 U 0.383
3 C0.033
4 C 0.017
98 U 0.234
99 G 0.885

The nucleotide information in the SHAPE file is optional and will be used to cross check the given input sequence if
present. If SHAPE reactivities could not be determined for every nucleotide, missing values can simply be omited.

The progress of the minimization will be printed to stderr. Once a solution was found, the calculated perturbation
vector will be print to stdout and can then further be used to constrain RNAfold’s MFE/partition function calculation
by applying the perturbation energies as soft constraints.

[RNAfold --shape=sequence.pv --shapeMethod=W < sequence.fasta J

4.22.5 AUTHOR

Dominik Luntzer, Ronny Lorenz

4.22.6 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.23 RNAsnoop
RNAsnoop - manual page for RNAsnoop 2.6.4

4.23.1 Synopsis

[RNAsnoop [options] }
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4.23.2 DESCRIPTION

RNAsnoop 2.6.4
Find targets of a query H/ACA snoRNA

reads a target RNA sequence and a H/ACA snoRNA sequence from a target and query file, respectively and com-
putes optimal and suboptimal secondary structures for their hybridization. The calculation can be done roughly in
O(nm), where is n the length of the target sequence and m is the length of the snoRNA stem, as it is specially tailored
to the special case of H/ACA snoRNA. For general purpose target predictions, please have a look at RNAduplex,
RNAup, RNAcofold and RNAplex. Accessibility effects can be estimated by RNAsnoop if a RNAplfold accessi-
bility profile is provided.

The computed optimal and suboptimal structure are written to stdout, one structure per line. Each line consist
of: The structure in dot bracket format with a & separating the two strands. The <> brackets represent snoRNA
intramolecular interactions, while the () brackets represent intermolecular interactions between the snoRNA and
its target.

The range of the structure in the two sequences in the format “from,to : from,to”; the energy of duplex structure in
kcal/mol. If available the opening energy are also returned.

--help

Print help and exit
--detailed-help

Print help, including all details and hidden options, and exit
-V, --version

Print version and exit

I/0 Options:

Command line options for input and output (pre-)processing
-s, --query=STRING
File containing the query sequence.

Input sequences can be given piped to RNAsnoop or given in a query file with the -s option. Note that the
-s option implies that the -t option is also used.

-t, --target=STRING
File containing the target sequence.

Input sequences can be given piped to RNAsnoop or given in a target file with the -t optionNote that the -t
option implies that the -s option is also used.

-S, --suffix=STRING
Specificy the suffix that was added by RNAup to the accessibility files.
(default="_ul_to_30.out”)
-P, --from-RNAplfold=STRING
Specify the directory where accessibility profile generated by RNAplfold are found.
-U, --from-RNAup=STRING
Specify the directory where accessibility profiles generated by RNAup are found.
-0, --output_directory=STRING Set where the generated figures should be

stored.

(default="./")
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Algorithms:

Options which alter the computing behaviour of RNAplex. Please note that the options allowing to
filter out snoRNA-RNA duplexes expect the energy to be given in decacal/mol instead of kcal/mol. A
threshold of -2.8(kcal/mol) should be given as :option:*-280"(decacal/mol).

-A, --alignment-mode
Specify if RNAsnoop gets alignments or single sequences as input.
(default=off)

-f, --fast-folding=INT
Speedup of the target search. (default="1")

This option allows one to decide if the backtracking has to be done (-f 1) or not (-f 0). For -f 1 the
structure is computed based on the standard energy model. This is the slowest mode of RNAsnoop. -£f 0 is
the fastest mode, as no structure are recomputed and only the interaction energy is returned.

-c, --extension-cost=INT
Cost to add to each nucleotide in a duplex. (default="0")

Cost of extending a duplex by one nucleotide. Allows one to find compact duplexes, having few/small
bulges or interior loops. Only useful when no accessibility profiles are available. This option is disabled if
accessibility profiles are used (-P option).

-e, --energy-threshold=DOUBLE Maximal energy difference between the mfe and

the desired suboptimal.
(default="-1")

Energy range for a duplex to be returned. The threshold is set on the total energy of interaction, i.e. the
hybridizationenergy corrected for opening energy if -a is set or the energy corrected by -c. If unset, only
the mfe will be returned.

-0, --minimal-right-duplex=INT
Minimal Right Duplex Energy

(default="-270")

-1, --minimal-loop-energy=INT Minimal Right Duplex Energy.
(default="-280")

Minimal Stem Loop Energy of the snoRNA. The energy should be given in decacalories, i.e. a minimal
stem-loop energy of -2.8 kcal/mol corresponds to -288 decacal/mol.

.HP -p, :option:"—minimal-left-duplex’=*INT* Minimal Left Duplex Energy.
(default="-170")

-q, --minimal-duplex=INT
Minimal Duplex Energy.
(default="-1090")

-d, --duplex-distance=INT
Distance between target 3’ ends of two consecutive duplexes.
(default="2")

Distance between the target 3’ends of two consecutive duplexes. Should be set to the maximal length of
interaction to get good results. Smaller d leads to larger overlaps between consecutive duplexes.

.HP -h, :option:"—minimal-stem-length"=*INT* Minimal snoRNA stem length.
(default="5")

.HP -1, :option:"—maximal-stem-length’=*INT* Maximal snoRNA stem length.
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(default="120")

-j, --minimal-duplex-box-length=INT
Minimal distance between the duplex end and the

H/ACA box.
(default="11")

-k, --maximal-duplex-box-length=INT
Maximal distance between the duplex end and the

H/ACA box.
(default="16")

-m, --minimal-snoRNA-stem-loop-length=INT
Minimal number of nucleotides between the

beginning of stem loop and
beginning of the snoRNA sequence.

(default="1")

-n, --maximal-snoRNA-stem-loop-length=INT
Maximal number of nucleotides between the

beginning of stem loop and
beginning of the snoRNA sequence.

(default="100000")

-v, --minimal -snoRNA-duplex-length=INT
Minimal distance between duplex start and

snoRNA.
(default="0")

-w, --maximal-snoRNA-duplex-length=INT
Maximal distance between duplex start and

snoRNA.
(default="0")

-X, --minimal-duplex-stem-energy=INT
Minimal duplex stem energy.
(default="-1370")

-y, --minimal-total-energy=INT
Minimal total energy.
(default="100000")

-a, --maximal -stem-asymmetry=INT
Maximal snoRNA stem asymmetry.
(default="30")

-b, --minimal-lower-stem-energy=INT
Minimal lower stem energy.

(default="100000")

-L, --alignmentLength=INT
Limit the extent of the interactions to L nucleotides.

(default="25")
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Structure Constraints:

Command line options to interact with the structure constraints feature of this program

-C, --constraint

Calculate the stem structure subject to constraints.

(default=off)

The program reads first the stem sequence, then a string containing constraints on the structure encoded with
the symbols:

. (no constraint for this base)

(the corresponding base has to be paired

x (the base is unpaired)

< (base i is paired with a base j>i)

> (base i is paired with a base j<i)

and matching brackets () (base i pairs base j)

With the exception of “|”, constraints will disallow all pairs conflicting with the constraint. This is usually
sufficient to enforce the constraint, but occasionally a base may stay unpaired in spite of constraints. PF
folding ignores constraints of type “|”.

“l”

Plotting:

Command line options for changing the default behavior of structure layout and pairing probability
plots.

-I, --produce-ps
Draw annotated 2D structures for a list of dot-bracket structures.
(default=off)

This option allows one to produce interaction figures in PS-format with conservation/accessibility annotation,
if available.

-N, --direct-redraw

Outputs 2D interactions concurrently with the interaction calculation for each suboptimal interaction. The
-I option should be preferred.

(default=off)

4.23.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

The calculation of duplex structure is based on dynamic programming algorithm originally developed by
Rehmsmeier and in parallel by Hofacker.
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H. Tafer, S. Kehr, J. Hertel, I.L. Hofacker, P.F. Stadler (2009), “RNAsnoop: efficient target prediction for H/ACA
snoRNAs.”, Bioinformatics: 26(5), pp 610-616

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.23.4 AUTHOR

Hakim Tafer, Ivo L. Hofacker

4.23.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.24 RNAsubopt
RNAsubopt - manual page for RNAsubopt 2.6.4

4.24.1 Synopsis

[RNAsubopt [OPTION]...

4.24.2 DESCRIPTION

RNAsubopt 2.6.4
calculate suboptimal secondary structures of RNAs

Reads RNA sequences from stdin and (in the default -e mode) calculates all suboptimal secondary structures
within a user defined energy range above the minimum free energy (mfe). It prints the suboptimal structures in
dot-bracket notation followed by the energy in kcal/mol to stdout. Be careful, the number of structures returned
grows exponentially with both sequence length and energy range.

Alternatively, when used with the -p option, RNAsubopt produces Boltzmann weighted samples of secondary
structures.

-h, --help

Print help and exit
--detailed-help

Print help, including all details and hidden options, and exit
--full-help

Print help, including hidden options, and exit

-V, --version
Print version and exit
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-v, --verbose

Be verbose.

(default=off)

I/0 Options:

Command line options for input and output (pre-)processing

-1, --infile=filename
Read a file instead of reading from stdin.
The default behavior of RNAsubopt is to read input from stdin. Using this parameter the user can specify an
input file name where data is read from.

-0, --outfile[=filename]
Print output to file instead of stdout.
This option may be used to write all output to output files rather than printing to stdout. The default filename
is “RNAsubopt_output.sub” if no FASTA header precedes the input sequences and the --auto-id feature
is inactive. Otherwise, output files with the scheme “prefix.sub” are generated, where the “prefix” is taken
from the sequence id. The user may specify a single output file name for all data generated from the input
by supplying an optional string as argument to this parameter. In case a file with the same filename already
exists, any output of the program will be appended to it. Note: Any special characters in the filename will be
replaced by the filename delimiter, hence there is no way to pass an entire directory path through this option
yet. (See also the “—filename-delim” parameter)

--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)
--auto-id
Automatically generate an ID for each sequence. (default=off)

The default mode of RNAsubopt is to automatically determine an ID from the input sequence data if the
input file format allows to do that. Sequence IDs are usually given in the FASTA header of input sequences.
If this flag is active, RNAsubopt ignores any IDs retrieved from the input and automatically generates an ID
for each sequence. This ID consists of a prefix and an increasing number. This flag can also be used to add
a FASTA header to the output even if the input has none.

--id-prefix=STRING
Prefix for automatically generated IDs (as used in output file names).
(default=""sequence”)

If this parameter is set, each sequences’ FASTA id will be prefixed with the provided string. FASTA ids then
take the form “>prefix_xxxx” where xxxx is the sequence number. Note: Setting this parameter implies
--auto-1id.

--id-delim=CHAR
Change the delimiter between prefix and increasing number for automatically generated IDs (as used in
output file names).

(default="_")

This parameter can be used to change the default delimiter “_" between the prefix string and the increasing
number for automatically generated ID.

--id-digits=INT
Specify the number of digits of the counter in automatically generated alignment IDs.

(default="4")
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When alignments IDs are automatically generated, they receive an increasing number, starting with 1. This
number will always be left-padded by leading zeros, such that the number takes up a certain width. Using
this parameter, the width can be specified to the users need. We allow numbers in the range [1:18]. This
option implies --auto-id.

--id-start=LONG

Specity the first number in automatically generated IDs.
(default="1")

When sequence IDs are automatically generated, they receive an increasing number, usually starting with 1.
Using this parameter, the first number can be specified to the users requirements. Note: negative numbers
are not allowed. Note: Setting this parameter implies to ignore any IDs retrieved from the input data, i.e. it
activates the --auto-id flag.

--filename-delim=CHAR

Change the delimiting character used in sanitized filenames.
(default=""ID-delimiter”)

This parameter can be used to change the delimiting character used while sanitizing filenames, i.e. replacing
invalid characters. Note, that the default delimiter ALWAYS is the first character of the “ID delimiter”
as supplied through the --id-delim option. If the delimiter is a whitespace character or empty, invalid
characters will be simply removed rather than substituted. Currently, we regard the following characters as
illegal for use in filenames: backslash \, slash /, question mark ?, percent sign %, asterisk *, colon :, pipe
symbol |, double quote ", triangular brackets < and >.

--filename-full

Use full FASTA header to create filenames. (default=off)

This parameter can be used to deactivate the default behavior of limiting output filenames to the first word of
the sequence ID. Consider the following example: An input with FASTA header >NM_0001 Homo Sapiens
some gene usually produces output files with the prefix “NM_0001" without the additional data available
in the FASTA header, e.g. “NM_0001.sub”. With this flag set, no truncation of the output filenames is
performed, i.e. output filenames receive the full FASTA header data as prefixes. Note, however, that invalid
characters (such as whitespace) will be substituted by a delimiting character or simply removed, (see also
the parameter option --filename-delim).

Algorithms:

Select the algorithms which should be applied to the given RNA sequence(s).

-e, --deltaEnergy=range

Compute suboptimal structures with energy in a certain range of the optimum (kcal/mol).

Default is calculation of mfe structure only.

--deltaEnergyPost=range

Only print structures with energy within range of the mfe after post reevaluation of energies.

Useful in conjunction with -1ogML, -d1 or -d3: while the -e option specifies the range before energies are
re-evaluated, this option specifies the maximum energy after re-evaluation.

-s, --sorted

Sort the suboptimal structures by energy and lexicographical order.

(default=off)

Structures are first sorted by energy in ascending order. Within groups of the same energy, structures are
then sorted in ascending in lexicographical order of their dot-bracket notation. See the --en-only flag to
deactivate this second step. Note that sorting is done in memory, thus it can easily lead to exhaution of RAM!
This is especially true if the number of structures produced becomes large or the RNA sequence is rather
long. In such cases better use an external sort method, such as UNIX “sort”.
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--en-only
Only sort structures by free energy. (default=off)

In combination with --sorted, this flag deactivates the second sorting criteria and sorts structures solely
by their free energy instead of additionally sorting by lexicographic order in each energy band. This might
save some time during the sorting process in situations where lexicographic order is not required.

-p, --stochBT=number
Randomly draw structures according to their probability in the Boltzmann ensemble.

Instead of producing all suboptimals in an energy range, produce a random sample of suboptimal struc-
tures, drawn with probabilities equal to their Boltzmann weights via stochastic backtracking in the partition
function. The -e and -p options are mutually exclusive.

--stochBT_en=number
Same as “—stochBT” but also print free energies and probabilities of the backtraced structures.

--betaScale=DOUBLE
Set the scaling of the Boltzmann factors. (default="1.")

The argument provided with this option is used to scale the thermodynamic temperature in the Boltzmann
factors independently from the temperature of the individual loop energy contributions. The Boltzmann
factors then become exp (- dG/(kT*betaScale)) where k is the Boltzmann constant, dG the free energy
contribution of the state and T the absolute temperature.

-N, --nonRedundant
Enable non-redundant sampling strategy.
(default=off)

-S, --p£Scale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default="1.07")

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.
-c, --circ

Assume a circular (instead of linear) RNA molecule.

(default=off)
-D, --dos

Compute density of states instead of secondary structures.

(default=off)

This option enables the evaluation of the number of secondary structures in certain energy bands around the
MEFE.

-z, --zuker
Compute Zuker suboptimals instead of all suboptimal structures within an energy band around the MFE.

(default=off)

-g, --gquad
Incoorporate G-Quadruplex formation. (default=off)

No support of G-quadruplex prediction for stochastic backtracking and Zuker-style suboptimals yet).
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Structure Constraints:

Command line options to interact with the structure constraints feature of this program

--maxBPspan=INT

Set the maximum base pair span.

(default="-1")

-C, --constraint[=filename]

Calculate structures subject to constraints. (default="")

The program reads first the sequence, then a string containing constraints on the structure encoded with the
symbols:

. (no constraint for this base)

| (the corresponding base has to be paired

x (the base is unpaired)

< (base i is paired with a base j>i)

> (base i is paired with a base j<i)

and matching brackets () (base i pairs base j)

With the exception of |, constraints will disallow all pairs conflicting with the constraint. This is usually
sufficient to enforce the constraint, but occasionally a base may stay unpaired in spite of constraints. PF
folding ignores constraints of type |.

--batch

Use constraints for multiple sequences. (default=off)

Usually, constraints provided from input file only apply to a single input sequence. Therefore, RNAsubopt
will stop its computation and quit after the first input sequence was processed. Using this switch, RNAsubopt
processes multiple input sequences and applies the same provided constraints to each of them.

--canonicalBPonly

Remove non-canonical base pairs from the structure constraint.

(default=off)

--enforceConstraint

Enforce base pairs given by round brackets () in structure constraint.

(default=off)

--shape=filename

Use SHAPE reactivity data to guide structure predictions.

--shapeMethod=method

Select SHAPE reactivity data incorporation strategy.

(default="D")

The following methods can be used to convert SHAPE reactivities into pseudo energy contributions.
D: Convert by using the linear equation according to Deigan et al 2009.

Derived pseudo energy terms will be applied for every nucleotide involved in a stacked pair. This
method is recognized by a capital D in the provided parameter, i.e.: --shapelMethod="D” is the de-
fault setting. The slope m and the intercept b can be set to a non-default value if necessary, other-
wise m=1.8 and b=-0.6. To alter these parameters, e.g. m=1.9 and b=-0.7, use a parameter string
like this: --shapeMethod="Dm1.9b-0.7”. You may also provide only one of the two parameters like:
--shapeMethod="Dm1.9” or --shapeMethod="Db-0.7".

Z: Convert SHAPE reactivities to pseudo energies according to Zarringhalam

176

Chapter 4. Manpages



ViennaRNA, Release 2.6.4

etal 2012. SHAPE reactivities will be converted to pairing probabilities by using linear mapping. Aberration
from the observed pairing probabilities will be penalized during the folding recursion. The magnitude of the
penalties can affected by adjusting the factor beta (e.g. --shapeMethod="7b0.8").

W: Apply a given vector of perturbation energies to unpaired nucleotides

according to Washietl et al 2012. Perturbation vectors can be calculated by using RNApvmin.
--shapeConversion=method

Select method for SHAPE reactivity conversion.

(default="0")

This parameter is useful when dealing with the SHAPE incorporation according to Zarringhalam et al. The
following methods can be used to convert SHAPE reactivities into the probability for a certain nucleotide to
be unpaired.

M: Use linear mapping according to Zarringhalam et al. C: Use a cutoff-approach to divide into paired and
unpaired nucleotides (e.g. “C0.25) S: Skip the normalizing step since the input data already represents prob-
abilities for being unpaired rather than raw reactivity values L: Use a linear model to convert the reactivity
into a probability for being unpaired (e.g. “Ls0.68i0.2” to use a slope of 0.68 and an intercept of 0.2) 0: Use
a linear model to convert the log of the reactivity into a probability for being unpaired (e.g. “Os1.6i-2.29”
to use a slope of 1.6 and an intercept of -2.29)

--commands=filename
Read additional commands from file

Commands include hard and soft constraints, but also structure motifs in hairpin and interior loops that need
to be treeted differently. Furthermore, commands can be set for unstructured and structured domains.

Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files
-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")
-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.
--salt=DOUBLE
Set salt concentration in molar (M). Default is 1.021M.
-m, --modifications[=STRING]
Allow for modified bases within the RNA sequence string.
(default="716P9D")

Treat modified bases within the RNA sequence differently, i.e. use corresponding energy corrections and/or
pairing partner rules if available. For that, the modified bases in the input sequence must be marked by
their corresponding one-letter code. If no additional arguments are supplied, all available corrections are
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performed. Otherwise, the user may limit the modifications to a particular subset of modifications, resp.
one-letter codes, e.g. -mP6 will only correct for pseudouridine and m6A bases.

Currently supported one-letter codes and energy corrections are:
: 7-deaza-adenonsine (7DA)
: Inosine

: N6-methyladenosine (m6A)

7
I
6
P: Pseudouridine
9: Purine (a.k.a. nebularine)
D: Dihydrouridine
--mod-file=STRING
Use additional modified base data from JSON file.

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters

-d, --dangles=INT
How to treat “dangling end” energies for bases adjacent to helices in free ends and multi-loops.
(default="2")

With -d1 only unpaired bases can participate in at most one dangling end. With -d2 this check is ignored,
dangling energies will be added for the bases adjacent to a helix on both sides in any case; this is the default
for mfe and partition function folding (-p). The option -d® ignores dangling ends altogether (mostly for
debugging). With -d3 mfe folding will allow coaxial stacking of adjacent helices in multi-loops. At the
moment the implementation will not allow coaxial stacking of the two interior pairs in a loop of degree 3
and works only for mfe folding.

Note that with -d1 and -d3 only the MFE computations will be using this setting while partition function
uses -d2 setting, i.e. dangling ends will be treated differently.

--noLP

Produce structures without lonely pairs (helices of length 1).

(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.

(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.

(default=off)

--logML
Recompute energies of structures using a logarithmic energy function for multi-loops before output. (de-
Sault=off)

This option does not effect structure generation, only the energies that are printed out. Since logML lowers
energies somewhat, some structures may be missing.
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--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given 0 stacking energy.

--energyModel=INT

Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.24.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

S. Wuchty, W. Fontana, I. L. Hofacker and P. Schuster (1999), “Complete Suboptimal Folding of RNA and the
Stability of Secondary Structures”, Biopolymers: 49, pp 145-165

M. Zuker (1989), “On Finding All Suboptimal Foldings of an RNA Molecule”, Science 244.4900, pp 48-52

Y. Ding, and C.E. Lawrence (2003), “A statistical sampling algorithm for RNA secondary structure prediction”,
Nucleic Acids Research 31.24, pp 7280-7301

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L.. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282
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4.24.4 AUTHOR

Ivo L Hofacker, Stefan Wuchty, Walter Fontana, Ronny Lorenz

4.24.5 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
4.25 RNAup
RNAup - manual page for RNAup 2.6.4

4.25.1 Synopsis

[RNAup [OPTION]... ]

4.25.2 DESCRIPTION

RNAup 2.6.4
Calculate the thermodynamics of RNA-RNA interactions

RNAup calculates the thermodynamics of RNA-RNA interactions, by decomposing the binding into two stages.
(1) First the probability that a potential binding sites remains unpaired (equivalent to the free energy needed to
open the site) is computed. (2) Then this accessibility is combined with the interaction energy to obtain the total
binding energy. All calculations are done by computing partition functions over all possible conformations.

RNAup provides two different modes: By default RNAup computes accessibilities, in terms of the free energies
needed to open a region (default length 4). It prints the region of highest accessibility and its opening energy to
stdout, opening energies for all other regions are written to a file.

.br In interaction mode the interaction between two RNAs is calculated. It is invoked if the input consists of
two sequences concatenated with an &, or if the options -X[pf] or -b are given. Unless the -b option is specified
RNAup assumes that the longer RNA is a structured target sequence while the shorter one is an unstructured small
RNA. .br Additionally, for every position along the target sequence we write the best free energy of binding for an
interaction that includes this position to the the output file. Output to stdout consists of the location and free energy,
dG, for the optimal region of interaction. The binding energy dG is also split into its components the interaction
energy dGint and the opening energy dGu_l (and possibly dGu_s for the shorter sequence). .br In addition we
print the optimal interaction structure as computed by RNAduplex for this region. Note that it can happen that the
RNAduplex computed optimal interaction does not coincide with the optimal RNAup region. If the two predictions
don’t match the structure string is replaced by a run of “.” and a message is written to stderr. .br

Each sequence should be in 57" to 3" direction. If the sequence is preceded by a line of the form .. code:

(5 e ]

the output file “name_ux_up.out” is produced, where the “x” in “ux” is the value set by the -u option. Otherwise
the file name defaults to RNA_ux_up.out. The output is concatenated if a file with the same name exists. .br

RNA sequences are read from stdin as strings of characters. White space and newline within a sequence cause
an error! Newline is used to separate sequences. The program will continue to read new sequences until a line
consisting of the single character @ or an end of file condition is encountered.

-h, --help
Print help and exit

180 Chapter 4. Manpages


mailto:rna@tbi.univie.ac.at

ViennaRNA, Release 2.6.4

--detailed-help

Print help, including all details and hidden options, and exit

--full-help

Print help, including hidden options, and exit

-V, --version

Print version and exit

I/0 Options:

Command line options for input and output (pre-)processing
-0, --no_output_£file
Do not produce an output file.
(default=off)
--no_header
Do not produce a header with the command line parameters used in the outputfile.
(default=off)
--noconv

Do not automatically substitute nucleotide “T” with “U”.

(default=off)

Algorithms:

Select additional algorithms which should be included in the calculations.
-u, --ulength=length

Specify the length of the unstructured region in the output.

(default="4")

The probability of being unpaired is plotted on the right border of the unpaired region. You can specify up
to 20 different length values: use “-” to specify a range of continuous values (e.g. -u 4-8) or specify a list
of comma separated values (e.g. -u 4,8,15).

-c, --contributions=SHIME

Specify the contributions listed in the output. (default="S")

By default only the full probability of being unpaired is plotted. The -c option allows one to get the different
contributions (c) to the probability of being unpaired: The full probability of being unpaired (“S” is the sum
of the probability of being unpaired in the exterior loop (“E”), within a hairpin loop (“H”), within an interior
loop (“I”’) and within a multiloop (“M”). Any combination of these letters may be given.

Calculations of RNA-RNA interactions:

-w, -—-window=INT
Set the maximal length of the region of interaction.
(default="25")
-b, --include_both
Include the probability of unpaired regions in both (b) RNAs.
(default=off)
By default only the probability of being unpaired in the longer RNA (target) is used.
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-5, -—extend5=INT

Extend the region of interaction in the target to some residues on the 5’ side.

The underlying assumption is that it is favorable for an interaction if not only the direct region of contact is
unpaired but also a few residues 5’

-3, -—extend3=INT

Extend the region of interaction in the target to some residues on the 3’ side.

The underlying assumption is that it is favorable for an interaction if not only the direct region of contact is
unpaired but also a few residues 3’

--interaction_pairwise

Activate pairwise interaction mode. (default=off)

The first sequence interacts with the 2nd, the third with the 4th etc. If activated, two interacting sequences
may be given in a single line separated by “&” or each sequence may be given on an extra line.

--interaction_first

Activate interaction mode using first sequence only.
(default=off)

The interaction of each sequence with the first one is calculated (e.g. interaction of one mRNA with many
small RNAs). Each sequence has to be given on an extra line

-S, --p£fScale=DOUBLE

In the calculation of the pf use scale*mfe as an estimate for the ensemble free energy (used to avoid over-
flows).

(default="1.07")

The default is 1.07, useful values are 1.0 to 1.2. Occasionally needed for long sequences.

Structure Constraints:

Command line options to interact with the structure constraints feature of this program

-C, --constraint

Apply structural constraint(s) during prediction.
(default=off)

The program first reads the sequence(s), then a dot-bracket like string containing constraints on the structure.
The following symbols are recognized:

. no constraint for this base
X ... the base is unpaired
< ... the base pairs downstream, i.e. i is paired with j > i
> ... the base pairs upstream, i.e. i is paired with j < i
Q) ... base i pairs with base j
| ... the corresponding base has to be paired intermolecularily (only for

interaction mode)
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Energy Parameters:

Energy parameter sets can be adapted or loaded from user-provided input files

-T, --temp=DOUBLE
Rescale energy parameters to a temperature of temp C. Default is 37C.
(default="37.0")

-P, --paramFile=paramfile
Read energy parameters from paramfile, instead of using the default parameter set.

Different sets of energy parameters for RNA and DNA should accompany your distribution. See the RNAlib
documentation for details on the file format. The placeholder file name DNA can be used to load DNA
parameters without the need to actually specify any input file.

-4, --noTetra
Do not include special tabulated stabilizing energies for tri-, tetra- and hexaloop hairpins.
(default=off)
Mostly for testing.

--salt=DOUBLE

Set salt concentration in molar (M). Default is 1.021M.

--saltInit=DOUBLE

Provide salt correction for duplex initialization (in kcal/mol).

Model Details:

Tweak the energy model and pairing rules additionally using the following parameters
-d, --dangles=INT
Specify “dangling end”” model for bases adjacent to helices in free ends and multi-loops.
(default="2")
With -d2 dangling energies will be added for the bases adjacent to a helix on both sides in any case.
The option -d® ignores dangling ends altogether (mostly for debugging).
--noLP
Produce structures without lonely pairs (helices of length 1).
(default=off)

For partition function folding this only disallows pairs that can only occur isolated. Other pairs may still
occasionally occur as helices of length 1.

--noGU
Do not allow GU pairs.
(default=off)
--noClosingGU
Do not allow GU pairs at the end of helices.
(default=off)
--nsp=STRING
Allow other pairs in addition to the usual AU,GC,and GU pairs.

Its argument is a comma separated list of additionally allowed pairs. If the first character is a “-” then AB
will imply that AB and BA are allowed pairs, e.g. --nsp="-GA” will allow GA and AG pairs. Nonstandard
pairs are given O stacking energy.
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-e, --energyModel=INT
Set energy model.

Rarely used option to fold sequences from the artificial ABCD... alphabet, where A pairs B, C-D etc. Use
the energy parameters for GC (-e 1) or AU (-e 2) pairs.

--helical-rise=FLOAT
Set the helical rise of the helix in units of Angstrom.
(default="2.8")

Use with caution! This value will be re-set automatically to 3.4 in case DNA parameters are loaded via -P
DNA and no further value is provided.

--backbone-length=FLOAT
Set the average backbone length for looped regions in units of Angstrom.
(default="6.0")

Use with caution! This value will be re-set automatically to 6.76 in case DNA parameters are loaded via -P
DNA and no further value is provided.

4.25.3 REFERENCES

If you use this program in your work you might want to cite:

R. Lorenz, S.H. Bernhart, C. Hoener zu Siederdissen, H. Tafer, C. Flamm, P.F. Stadler and I.L. Hofacker (2011),
“ViennaRNA Package 2.0”, Algorithms for Molecular Biology: 6:26

L.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), “Fast Folding and Comparison
of RNA Secondary Structures”’, Monatshefte f. Chemie: 125, pp 167-188

R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), “RNA folding with hard and soft constraints”, Algorithms for Molec-
ular Biology 11:1 pp 1-13

U. Mueckstein, H. Tafer, J. Hackermueller, S.H. Bernhart, P.F. Stadler, and I.L. Hofacker (2006), “Thermodynamics
of RNA-RNA Binding”, Bioinformatics: 22(10), pp 1177-1182

The energy parameters are taken from:

D.H. Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J. Susan, M. Zuker, D.H. Turner (2004),
“Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA
secondary structure”, Proc. Natl. Acad. Sci. USA: 101, pp 7287-7292

D.H Turner, D.H. Mathews (2009), “NNDB: The nearest neighbor parameter database for predicting stability of
nucleic acid secondary structure”, Nucleic Acids Research: 38, pp 280-282

4.25.4 EXAMPLES

.B Output to stdout:

In Interaction mode RNAup prints the most favorable interaction energy between the two sequences to stdout.
The most favorable interaction energy (dG) depends on the position in the longer sequence (region [i,j]) and the
position in the shorter sequence (region[k,1]): dG[i,j;k,1]. dG[i,j;k,1] is the largest contribution to dG[i,j] = sum_kl
dGli,j;k,1] which is given in the output file: therefore dG[i,j;k,1] <= dG[i,j].

e . L SN PP s R A -
> franz
GGAGUAGGUUAUCCUCUGUU
> sissi
AGGACAACCU
dG = dGint + dGu_1
CCCCC. CCcCcceayy) o 6,15 : 1,10 (-6.66 = -9.89 + 3.23)

(continues on next page)
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(continued from previous page)

AGGUUAUCCU&AGGACAACCU
RNAup output in file: franz_sissi_w25_u3_4_up.out

where the result line contains following information

RNAduplex results [i,j] [k,1] dG = dGint + dGu_l
CCCCC. CcCcCcee)yyoom 6,15 : 1,10 (-6.66=-9.89+3.23)

.RD .B Output to file:

Output to file contains a header including date, the command line of the call to RNAup, length and names of the
input sequence(s) followed by the sequence(s). The first sequence is the target sequence. Printing of the header
can be turned off using the -nh option.

The line directly after the header gives the column names for the output:

position dGu_1 for -u 3 dGu_1 for -u 4 dG
# pos u3s u3H u4S u4H dG

where all information refers to the target sequence. The dGu_l column contains information about the -u value
(u=3 or u=4) and the contribution to the free energy to open all structures “S” or only hairpin loops “H”, see option
-c. NA means that no results is possible (e.g. column u3S row 2: no region of length 3 ending at position 2 exists).

# Thu Apr 10 09:15:11 2008

# RNAup -u 3,4 -c SH -b

# 20 franz

# GGAGUAGGUUAUCCUCUGUU

# 10 sissi

# AGGACAACCU

# pos u3s u3H u4s u4H dG
1 NA NA NA NA -1.540
2 NA NA NA NA -1.540
3 1.371 NA NA NA -1.217
4 1.754 5.777 1.761 NA -1.393
5 1.664 3.140 1.811 5.800 -1.393

J

If the -b option is selected position and dGu_s values for the shorter sequence are written after the information for
the target sequence.

4.25.5 AUTHOR

Ivo L Hofacker, Peter F Stadler, Ulrike Mueckstein, Ronny Lorenz

4.25.6 REPORTING BUGS

If in doubt our program is right, nature is at fault. Comments should be sent to rna@tbi.univie.ac.at.
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Main Programs

Program Description

RNA2Dfold  Compute MFE structure, partition function and representative sample structures of k,1 neighbor-
hoods

RNAalidu-  Predict conserved RNA-RNA interactions between two alignments

plex

RNAalifold  Calculate secondary structures for a set of aligned RNA sequences

RNAcofold  Calculate secondary structures of two RNAs with dimerization

RNAdis- Calculate distances between RNA secondary structures

tance

RNAdos Calculate the density of states for each energy band of an RNA

RNAduplex  Compute the structure upon hybridization of two RNA strands

RNAeval Evaluate free energy of RNA sequences with given secondary structure

RNAfold Calculate minimum free energy secondary structures and partition function of RNAs

RNAheat Calculate the specific heat (melting curve) of an RNA sequence

RNAin- Find RNA sequences with given secondary structure (sequence design)

verse

RNALali- Calculate locally stable secondary structures for a set of aligned RNAs

Jold

RNALfold Calculate locally stable secondary structures of long RNAs

RNAmulti-  Compute thermodynamic properties for interaction complexes of multiple RNAs

fold

RNApaln RNA alignment based on sequence base pairing propensities

RNApdist Calculate distances between thermodynamic RNA secondary structures ensembles

RNA- Convert energy parameter files from ViennaRNA 1.8 to 2.0 format

parcony

RNAP- Predict RNA secondary structures including pseudoknots

Kplex

RNAplex Find targets of a query RNA

RNAplfold  Calculate average pair probabilities for locally stable secondary structures

RNAplot Draw RNA Secondary Structures in PostScript, SVG, or GML

RNApvmin  Calculate a perturbation vector that minimizes discrepancies between predicted and observed
pairing probabilities

RNAsnoop  Find targets of a query H/ACA snoRNA

RNAsubopt  Calculate suboptimal secondary structures of RNAs

RNAup Calculate the thermodynamics of RNA-RNA interactions

Additional Programs

We include the following additional programs in our distribution of the ViennaRNA Package. Whether or not they
are installed together with the ViennaRNA Package depends on its Configuration.

Program Description

AnalyseDists  Analyse a distance matrix

AnalyseSeqs  Analyse a set of sequences of common length

Kinfold Simulate kinetic folding of RNA secondary structures

kinwalker Predict RNA folding trajectories

RNAforester ~Compare RNA secondary structures via forest alignment

RNAlocmin  Calculate local minima from structures via gradient walks

RNAxplorer  Explore the RNA conformation space through sampling and other techniques
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USING RNALIB

5.1 Linking against RNAIlib

In order to use our implemented algorithms you simply need to link your program to our RNAlib C-library that
usually comes along with the ViennaRNA Package installation. If you’ve installed the ViennaRNA Package as a
pre-build binary package, you probably need the corresponding development package, e.g. viennarna-devel, or
viennarna-dev. The only thing that is left is to include the ViennaRNA header files into your source code, e.g.:

[#include <ViennaRNA/mfe.h> }

and start using our fast and efficient algorithm implementations.

See also...

In the C Examples section, we list a small set of example code that usually is a good starting point for your appli-
cation.

5.1.1 Compiler and Linker flags

Of course, simply adding the ViennaRNA header files into your source code is usually not enough. You probably
need to tell your compiler where to find the header files, and sometimes add additional pre-processor directives.
Whenever your installation of RNAIib was build with default settings and the header files were installed into their
default location, a simple:

[—I/usr/include J

pre-processor/compile flag should suffice. It can even be omitted in this case, since your compiler should search
this directory by default anyway. You only need to change the path from /usr/include to the correct location
whenever the header files have been installed into a non-standard directory.

If you’ve compiled RNA/ib with some non-default settings then you probably need to define some additional pre-
processor macros:

e VRNA_DISABLE_C11_FEATURES ... Disable C11/C++11 features.

Warning: Add this directive to your pre-processor/compile flags only if RNAlib was build with the
--disable-c11 configure option.

See also...

Disable C11/C++11 features and vrna_C11_features()
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e VRNA_WARN_DEPRECATED ... Enable warnings for using deprecated symbols.

Note: Adding this directive enables compiler warnings whenever you use symbols in RNAIib that are marked
deprecated.

See also...

Deprecated symbols and Deprecated List

* USE_FLOAT_PF ... Use single precision floating point operations instead of double precision in partition
function computations.

Warning: Define this macro only if RNAlib was build with the --enable-floatpf configure option!

See also...

Single precision

For instance, you might want to add the following definition(s) to your pre-processor/compile flags:

[—DVRNA_DI SABLE_C11_FEATURES }

Finally, linking against RNAIib is achieved by adding the following linker flag:

[—L/usr/lib -1RNA -flto -fopenmp J

Again, the path to the library, /usr/1ib, may be omitted if this path is searched for libraries by default. The
second flag tells the linker to include 1ibRNA. a, and the remaining two flags activate Link Time Optimization and
OpenMP support, respectively.

Note: Depending on your linker, the last two flags may differ.
Depending on your configure time decisions, you can drop one or both of the last flags.

In case you’ve compiled RNAIib with LTO support (See Link Time Optimization) and you are using a different
compiler for your third-party project that links against our library, you may add the -fno-1to flag to disable Link
Time Optimization.

See also...

Linking fails with LTO error
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5.1.2 The pkg-config tool

Instead of hard-coding the required compiler and linker flags, you can also let the pkg-config tool automatically
determine the required flags. This tool is usually packaged for any Linux distribution and should be available for
MacOS X and MinGW as well. We ship a file RNA1ib2.pc which is installed along with the static 11bRNA.a C-
library and populated with all required compiler and linker flags that correspond to your configure time decisions.

The compiler flags required for properly building your code that uses RNAlib can be easily obtained via:

[pkg—config --cflags RNAlib2 }

You get the corresponding linker flags using:

[pkg—conﬁg __1ibs RNAlib2 ]

With this widely accepted standard it is also very easy to integrate RNAIib in your autotools project, just have a
look at the PKG_CHECK_MODULES macro.

5.2 C Examples

5.2.1 MFE Prediction (simple interface)

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ViennaRNA/fold.h>
#include <ViennaRNA/utils/basic.h>

int
main()
{
/* The RNA sequence */
char *seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";

/* allocate memory for MFE structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));

/* predict Minmum Free Energy and corresponding secondary structure */
float mfe = vrna_fold(seq, structure);

/* print sequence, structure and MFE */
printf("%s\n%s [ %6.2f ]\n", seq, structure, mfe);

/* cleanup memory */
free(structure);

return 0;
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5.2.2 MFE Prediction (VRNA 3.0 interface)

#include <stdlib.h>
#include <stdio.h>

#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/mfe.h>

int

main()

{
/* initialize random number generator */
vrna_init_rand();

/* Generate a random sequence of 50 nucleotides */
char “seq = vrna_random_string(50, "ACGU");

/* Create a fold compound for the sequence */
vrna_fold_compound_t *fc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);

/* allocate memory for MFE structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * (strlen(seq) +.

~1));

/* predict Minmum Free Energy and corresponding secondary structure */
float mfe = vrna_mfe(fc, structure);

/* print sequence, structure and MFE */
printf("%s\n%s [ %6.2f ]\n", seq, structure, mfe);

/* cleanup memory */
free(seq);

free(structure);
vrna_fold_compound_free(fc);

return 0;

5.2.3 MFE and Centroid structure Prediction

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <ViennaRNA/data_structures.h>
#include <ViennaRNA/params/basic.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/eval.h>

#include <ViennaRNA/fold.h>

#include <ViennaRNA/part_func.h>

(continues on next page)
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(continued from previous page)
int
main(int argc,
char *argv[])

! char *seq =

< "AGACGACAAGGUUGAAUCGCACCCACAGUCUAUGAGUCGGUGACAACAUUACGAAAGGCUGUAAAAUCAAUUAUUCACCACAGQ
qcﬁar *mfe_structure = vrna_alloc(sizeof(char) * (strlen(seq) +.
(ﬁi;;; “prob_string = vrna_alloc(sizeof(char) * (strlen(seq) +.
=1));

/* get a vrna_fold_compound with default settings */
vrna_fold_compound_t *vc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);

/* call MFE function */
double mfe = (double)vrna_mfe(vc, mfe_structure);

printf("%s\n%s (%6.2f)\n", seq, mfe_structure, mfe);

/* rescale parameters for Boltzmann factors */
vrna_exp_params_rescale(vc, &mfe);

/* call PF function */
FLT_OR_DBL en = vrna_pf(vc, prob_string);

/* print probability string and free energy of ensemble */
printf("%s (%6.2f)\n", prob_string, en);

/* compute centroid structure */
double dist;

char “cent = vrna_centroid(vc, &dist);

/% print centroid structure, its free energy and mean distance to the ensemble */
printf("%s (%6.2f d=%6.2f)\n", cent, vrna_eval_structure(vc, cent), dist);

/* free centroid structure */
free(cent);

/* free pseudo dot-bracket probability string */
free(prob_string);

/* free mfe structure */
free(mfe_structure);

/* free memory occupied by vrna_fold_compound */
vrna_fold_compound_free(vc);

return EXIT_SUCCESS;

GGGCCCCCGUGUC
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5.2.4 Suboptimal Structure Prediction

using the callback mechanism

#include <stdlib.h>
#include <stdio.h>

#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/subopt.h>

void

subopt_callback(const char *structure,
float energy,
void *data)

{

/* simply print the result and increase the counter variable by 1 */
if (structure)
print£("%d.\t%s\t%6.2f\n", (*((int *)data))++, structure, energy);

int

main(Q)

{
/% initialize random number generator */
vrna_init_rand();

/* Generate a random sequence of 50 nucleotides */
char *seq = vrna_random_string(50, "ACGU");

/* Create a fold compound for the sequence */
vrna_fold_compound_t *fc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);

int counter = 0;

/%
call subopt to enumerate all secondary structures in an energy band of
5 kcal/mol of the MFE and pass it the address of the callback and counter
variable
*/
vrna_subopt_cb(fc, 500, &subopt_callback, (void *)&counter);

/* cleanup memory */
free(seq);

vrna_fold_compound_free(fc);

return 0;
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5.2.5 Base Pair Probabilities

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ViennaRNA/fold.h>
#include <ViennaRNA/part_func.h>
#include <ViennaRNA/utils/basic.h>

int
main()
{
/* The RNA sequence */
char *seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";

/* allocate memory for pairing propensity string (length + 1) */
char *propensity = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));

/% pointers for storing and navigating through base pair probabilities */
vrna_ep_t *ptr, *pair_probabilities = NULL;

float en = vrna_pf_fold(seq, propensity, &pair_probabilities);

/% print sequence, pairing propensity string and ensemble free energy */
printf("%s\n%s [ %6.2f ]1\n", seq, propensity, en);

/* print all base pairs with probability above 50% */
for (ptr = pair_probabilities; ptr->i != 0; ptr++)
if (ptr->p > 0.5)
printf("p(%d, %d) = %g\n", ptr->i, ptr->j, ptr->p);

/* cleanup memory */
free(pair_probabilities);

free(propensity);

return 0;

5.2.6 MFE Consensus Structure Prediction

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ViennaRNA/alifold.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/alignments.h>

int
main()
{
/* The RNA sequence alignment */
const char *sequences[] = {
"CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU" ,

(continues on next page)
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(continued from previous page)
"CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU" ,
"'---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU" ,
NULL /* indicates end of alignment */
3

/* compute the consensus sequence */
char *cons = consensus(sequences);

/* allocate memory for MFE consensus structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * (strlen(sequences[0]) +.
~1));

/* predict Minmum Free Energy and corresponding secondary structure */
float mfe = vrna_alifold(sequences, structure);

/* print consensus sequence, structure and MFE */
printf("%s\n%s [ %6.2f ]\n", cons, structure, mfe);

/* cleanup memory */
free(cons);

free(structure);

return 0;

5.2.7 MFE Prediction (deviating from default settings)

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ViennaRNA/model.h>
#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/mfe.h>

int

main()

{
/* initialize random number generator */
vrna_init_rand();

/* Generate a random sequence of 50 nucleotides */
char *seq = vrna_random_string(50, "ACGU");

/* allocate memory for MFE structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));

/* create a new model details structure to store the Model Settings */
vrna_md_t md;

/* ALWAYS set default model settings first! */
vrna_md_set_default (&mnd);

(continues on next page)
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(continued from previous page)
/* change temperature and activate G-Quadruplex prediction */
md.temperature = 25.0; /* 25 Deg Celcius */
md.gquad = I /* Turn-on G-Quadruples support */

/* create a fold compound */
vrna_fold_compound_t *fc = vrna_fold_compound(seq, &md, VRNA_OPTION_DEFAULT);

/* predict Minmum Free Energy and corresponding secondary structure */
float mfe = vrna_mfe(fc, structure);

/* print sequence, structure and MFE */
printf("%s\n%s [ %6.2f ]\n", seq, structure, mfe);

/* cleanup memory */
free(structure);

vrna_fold_compound_free(fc);

return 0;

5.2.8 Soft Constraints

#include <stdlib.h>
#include <stdio.h>

#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/constraints/soft.h>
#include <ViennaRNA/mfe.h>

int

mainQ)

{
/% initialize random number generator */
vrna_init_rand();

/* Generate a random sequence of 50 nucleotides */
char *seq = vrna_random_string(50, "ACGU");

/* Create a fold compound for the sequence */
vrna_fold_compound_t *fc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);

/* Add soft constraint of -1.7 kcal/mol to nucleotide 5 whenever it appears in an.,
—unpaired context */
vrna_sc_add_up(fc, 5, -1.7, VRNA_OPTION_DEFAULT);

/* allocate memory for MFE structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * 51);

/% predict Minmum Free Energy and corresponding secondary structure */
float mfe = vrna_mfe(fc, structure);

/* print seqeunce, structure and MFE */

printf("%s\n%s [ %6.2f ]\n", seq, structure, mfe);
(continues on next page)
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/* cleanup memory */
free(seq);

free(structure);
vrna_fold_compound_free(fc);

return 0;

(continued from previous page)

5.2.9 A more elaborate (old) example

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "utils.h"
#include "fold_vars.h"
#include "fold.h"
#include '"part_func.h"
#include "inverse.h"
#include "RNAstruct.h"
#include '"treedist.h"
#include "stringdist.h"
#include '"profiledist.h"

void
main()
{
char *seql = "CGCAGGGAUACCCGCG", *seq2 = "GCGCCCAUAGGGACGC",
*structl, *struct2, *xstruc;
float el, e2, tree_dist, string dist, profile_dist, KkT;
Tree *T1, *T2;
swString *S1, *S2;
float *pfl, *pf2;

FLT_OR_DBL *bppm;

/* fold at 30C instead of the default 37C */
temperature = 30.; /* must be set *before* initializing

/* allocate memory for structure and fold */
structl = (char *)space(sizeof(char) * (strlen(seql) + 1));
el fold(seql, structl);

struct2 = (char *)space(sizeof(char) * (strlen(seq2) + 1));
e2 fold(seq2, struct2);

free_arraysQ; /* free arrays used in fold() */

/* produce tree and string representations for comparison */

xstruc = expand_Full(structl);
T1 = make_tree(xstruc);
S1 = Make_swString(xstruc);
free(xstruc);
xstruc = expand_Full(struct2);
(continues on next page)
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(continued from previous page)

T2 = make_tree(xstruc);
S2 = Make_swString(xstruc);
free(xstruc);

/* calculate tree edit distance and aligned structures with gaps */
edit_backtrack = 1;

tree_dist = tree_edit_distance(T1l, T2);

free_tree(T1l);

free_tree(T2);

unexpand_aligned_F(aligned_line);

printf("%s\n%s %3.2f\n", aligned_line[0], aligned_line[1], tree_dist);

/* same thing using string edit (alignment) distance */

string_dist = string_edit_distance(S1l, S2);

free(S1);

free(S2);

printf("%s mfe=%5.2f\n%s mfe=%5.2f dist=%3.2f\n",
aligned_line[0], el, aligned_line[1], e2, string_dist);

/* for longer sequences one should also set a scaling factor for

* partition function folding, e.g: */
kT = (temperature + 273.15) * 1.98717 / 1000.; /* kT in kcal/mol */
pf_scale = exp(-el / kKT / strlen(seql));

/* calculate partition function and base pair probabilities */

el = pf_fold(seql, structl);

/* get the base pair probability matrix for the previous run of pf_fold() */
bppm = export_bppm();

pfl = Make_bp_profile_bppm(bppm, strlen(seql));

e2 = pf_fold(seq2, struct2);

/* get the base pair probability matrix for the previous run of pf fold() */
bppm export_bppm();

pf2 = Make_bp_profile_bppm(bppm, strlen(seq2));

free_pf_arrays(); /* free space allocated for pf_fold() */

profile_dist = profile_edit_distance(pfl, pf2);
printf("%s free energy=%5.2f\n%s free energy=%5.2f dist=%3.2f\n",
aligned_line[0], el, aligned_line[1], e2, profile_dist);

free_profile(pfl);
free_profile(pf2);
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5.3 Python Examples

5.3.1 MFE Prediction (flat interface)

import RNA

# The RNA sequence
seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA"

# compute minimum free energy (MFE) and corresponding structure
(ss, mfe) = RNA.fold(seq)

# print output
print("{\n{} [ {:6.2f} ]".format(seq, ss, mfe))

5.3.2 MFE Prediction (object oriented interface)

import RNA;
sequence = "CGCAGGGAUACCCGCG"

# create new fold_compound object
fc = RNA. fold_compound(sequence)

# compute minimum free energy (mfe) and corresponding structure
(ss, mfe) = fc.mfe()

# print output
print("{} [ {:6.2f} ]".format(ss, mfe))

5.3.3 Suboptimal Structure Prediction

import RNA
sequence = "GGGGAAAACCCC"

# Set global switch for unique ML decomposition
RNA.cvar.uniq ML = 1

subopt_data = { 'counter' : 1, 'sequence' : sequence }

# Print a subopt result as FASTA record
def print_subopt_result(structure, energy, data):
if not structure == None:
print (">subopt {:d}".format(datal['counter']))

print("{I\n{} [{:6.2f}]".format(datal 'sequence'], structure, energy))

# increase structure counter
data['counter'] = data['counter'] + 1

# Create a 'fold_compound' for our sequence
a = RNA. fold_compound(sequence)

# Enumerate all structures 500 dacal/mol = 5 kcal/mol arround

(continues on next page)
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# the MFE and print each structure using the function above
a.subopt_cb(500, print_subopt_result, subopt_data);

5.3.4 Boltzmann Sampling

a.k.a. Probabilistic Backtracing

import RNA

sequence =
< "UGGGAAUAGUCUCUUCCGAGUCUCGCGGGCGACGGGCGAUCUUCGAAAGUGGAAUCCGUACUUAUACCGCCUGUGCGGACUACUAUCCUGACCACAU

n
—

def store_structure(s, data):

min

A simple callback function that stores
a structure sample into a list

if s:
data.append(s)

i

First we prepare a fold_compound object

i

# create model details
md = RNA.md()

# activate unique multibranch loop decomposition
md.uniq_ML = 1

# create fold compound object
fc = RNA. fold_compound(sequence, md)

# compute MFE
(ss, mfe) = fc.mfeQ)

# rescale Boltzmann factors according to MFE
fc.exp_params_rescale(mfe)

# compute partition function to fill DP matrices
fc.pfQ

i

Now we are ready to perform Boltzmann sampling

# 1. backtrace a single sub-structure of length 10
print("{}".format (fc.pbacktrack5(10)))

# 2. backtrace a single sub-structure of length 50
print("{}".format (fc.pbacktrack5(50)))

(continues on next page)
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# 3. backtrace multiple sub-structures of length 10 at once
for s in fc.pbacktrack5(20, 10):
print("{}".format(s))

# 4. backtrace multiple sub-structures of length 50 at once
for s in fc.pbacktrack5(100, 50):
print("{}". format(s))

# 5. backtrace a single structure (full length)
print("{}".format (fc.pbacktrack()))

# 6. backtrace multiple structures at once
for s in fc.pbacktrack(100):
print("{}".format(s))

# 7. backtrace multiple structures non-redundantly
for s in fc.pbacktrack(100, RNA.PBACKTRACK_NON_REDUNDANT) :
print("{}". format(s))

# 8. backtrace multiple structures non-redundantly (with resume option)
num_samples = 500

iterations = 15
d = None # pbacktrack memory object
s_list =[]

for i in range(0, iterations):
d, ss = fc.pbacktrack(num_samples, d, RNA.PBACKTRACK_NON_REDUNDANT)
s_list = s_list + list(ss)

for s in s_list:
print("{}".format(s))

# 9. backtrace multiple sub-structures of length 50 in callback mode
ss =[]
fc.pbacktrack5(100, 50, store_structure, ss)

-
I

for s in ss:
print("{}". format(s))

# 10. backtrace multiple full-length structures in callback mode
ss = listQ
i = fc.pbacktrack(100, store_structure, ss)

for s in ss:
print("{}". format(s))

# 11. non-redundantly backtrace multiple full-length structures in callback mode
ss = 1listQ)
i = fc.pbacktrack(100, store_structure, ss, RNA.PBACKTRACK_NON_REDUNDANT)

for s in ss:
print("{}".format(s))

# 12. non-redundantly backtrace multiple full length structures
# in callback mode with resume option

ss = []

(continues on next page)
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d = None # pbacktrack memory object

for i in range(0, iterations):
d, i = fc.pbacktrack(num_samples, store_structure, ss, d, RNA.PBACKTRACK_NON_
—.REDUNDANT)

for s in ss:
print("{}".format(s))

# 13. backtrace a single substructure from the sequence interval [10:50]
print("{}". format (fc.pbacktrack_sub(10, 50)))

# 14. backtrace multiple substructures from the sequence interval [10:50]
for s in fc.pbacktrack_sub(100, 10, 50):
print("{}" . format(s))

# 15. backtrace multiple substructures from the sequence interval [10:50] non-

—redundantly

for s in fc.pbacktrack_sub(100, 10, 50, RNA.PBACKTRACK_NON_REDUNDANT):
print("{}".format(s))

5.3.5 RNAfold -p MEA equivalent

#!/usr/bin/python
#

import RNA

seq =
—""AUUUCCACUAGAGAAGGUCUAGAGUGUUUGUCGUUUGUCAGAAGUCCCUAUUCCAGGUACGAACACGGUGGAUAUGUUCGACGA

n
—

# create fold_compound data structure (required for all subsequently applied .
—algorithms)
fc = RNA. fold_compound(seq)

# compute MFE and MFE structure
(mfe_struct, mfe) = fc.mfe()

# rescale Boltzmann factors for partition function computation
fc.exp_params_rescale(mfe)

# compute partition function
(pp, pf) = fc.pfO

# compute centroid structure
(centroid_struct, dist) = fc.centroid()

# compute free energy of centroid structure
centroid_en = fc.eval_structure(centroid_struct)

# compute MEA structure
(MEA_struct, MEA) = fc.MEAQ)

# compute free energy of MEA structure
(continues on next page)

5.3. Python Examples 201

CAGGAUCGGCGCA



ViennaRNA, Release 2.6.4

(continued from previous page)

MEA_en = fc.eval_structure(MEA_struct)

# print everything like RNAfold -p --MEA

print("{}\n{} ({:6.2f})".format(seq, mfe_struct, mfe))

print("{} [{:6.2f}]".format(pp, pf))

print("{} {{{:6.2f} d={:.2f}}}".format(centroid_struct, centroid_en, dist))
print("{} {{{:6.2f} MEA={:.2f}}}".format(MEA_struct, MEA_en, MEA))

print(" frequency of mfe structure in ensemble {:g}; ensemble diversity {:-6.2f}".
. format (fc.pr_structure(mfe_struct), fc.mean_bp_distance()))

5.3.6 MFE Consensus Structure Prediction

import RNA

# The RNA sequence alignment

sequences = [
"CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU" ,
"CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU" ,
" - --CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU"

1

# compute the consensus sequence
cons = RNA.consensus(sequences)

# predict Minmum Free Energy and corresponding secondary structure
(ss, mfe) = RNA.alifold(sequences);

# print output
print("{\n{} [ {:6.2f} ]".format(cons, ss, mfe))

5.3.7 MFE Prediction (deviating from default settings)

import RNA

# The RNA sequence
seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA"

# create a new model details structure
md = RNA.md()

# change temperature and dangle model
md. temperature = 20.0 # 20 Deg Celcius
md.dangles =1 # Dangle Model 1

# create a fold compound
fc = RNA. fold_compound(seq, md)

# predict Minmum Free Energy and corresponding secondary structure
(ss, mfe) = fc.mfe()

# print sequence, structure and MFE
print("{}\n{} [ {:6.2f} ]1".format(seq, ss, mfe))
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5.3.8 Fun with Soft Constraints

import RNA
seql = "CUCGUCGCCUUAAUCCAGUGCGGGCGCUAGACAUCUAGUUAUCGCCGCAA"

# Turn-off dangles globally
RNA.cvar.dangles = 0

# Data structure that will be passed to our MaximumMatching() callback with two.

<, components:

# 1. a 'dummy' fold_compound to evaluate loop energies w/o constraints, 2. a fresh set.
—o0f energy parameters

mm_data = { "dummy': RNA.fold_compound(seql), 'params': RNA.param() }

# Nearest Neighbor Parameter reversal functions
revert_NN = {

RNA.DECOMP_PAIR_HP: lambda i, j, k, 1, f, p: - f.eval_hp_loop(i, j) - 100,

RNA.DECOMP_PAIR_IL: lambda i, j, k, 1, f, p: - f.eval_int_loop(i, j, k, 1) -
- 100,

RNA.DECOMP_PAIR_ML: lambda i, j, k, 1, £, p: - p.MLclosing - p.MLintern[0] -
—~ (Jj-1-k+1-2) * p.MLbase - 100,

RNA.DECOMP_ML_ML_STEM: lambda i, j, k, 1, f, p: - p.MLintern[0] - (1 - k - 1).
—* p.MLbase,

RNA .DECOMP_ML_STEM: lambda i, j, k, 1, f, p: - p.MLintern[0] - (j - 1 - k +.
—1) * p.MLbase,

RNA.DECOMP_ML_ML: lambda i, j, k, 1, £, p: - (j -1 - k + 1) * p.MLbase,

RNA.DECOMP_ML_ML_ML: lambda i, j, k, 1, £, p: O,

RNA.DECOMP_ML_UP: lambda i, j, k, 1, f, p: - (j - 1 + 1) * p.MLbase,

RNA.DECOMP_EXT_STEM: lambda i, j, k, 1, f, p: - f.eval_ext_stem(k, 1),

RNA.DECOMP_EXT_EXT: lambda i, j, k, 1, £, p: O,

RNA.DECOMP_EXT_STEM_EXT: lambda i, j, k, 1, f, p: - f.eval_ext_stem(i, k),

RNA.DECOMP_EXT_EXT_STEM: 1lambda i, j, k, 1, f, p: - f.eval_ext_stem(l, j),

3

# Maximum Matching callback function (will be called by RNAlib in each decomposition.,
—step)
def MaximumMatching(i, j, k, 1, d, data):

return revert_NN[d](i, j, k, 1, data['dummy'], data['params'])

# Create a 'fold_compound' for our sequence
fc = RNA. fold_compound(seql)

# Add maximum matching soft-constraints
fc.sc_add_f(MaximumMatching)
fc.sc_add_data(mm_data, None)

# Call MFE algorithm
(s, mm) = fc.mfe()

# print result
print("{H\n{} (MM: {:d})".format(seql, s, int(-mm)))
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5.3.9 Parsing Alignments

Reading the first entry from a STOCKHOLM 1.0 formatted MSA file msa. stk may look like this:

[num, names, aln, id, ss = RNA.file_msa_read("msa.stk") J

Similarly, if the file contains more than one alignment, one can use the RNA. file_msa_read_record() function
to subsequently read each alignment separately:

with open("msa.stk") as f:
while True:
num, names, aln, id, ss = RNA.file_msa_read_record(f)
if num < 0:

break
elif num == 0:

print("empty alignment™)
else:

print(names, aln)

After successfully reading the first record, the variable num contains the number of sequences in the alignment (the
actual return value of the C-function), while the variables names, aln, id, and ss are lists of the sequence names
and aligned sequences, as well as strings holding the alignment ID and the structure as stated in the SS_cons line,
respectively.

Note: The last two return values may be empty strings in case the alignment does not provide the required data.

5.4 Perl 5 Examples

5.4.1 MFE Prediction (flat interface)

use RNA;

# The RNA sequence
my $seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";

# compute minimum free energy (MFE) and corresponding structure
my ($ss, $mfe) = RNA::fold($seq);

# print output
printf "%s\n%s [ %6.2f ]\n", $seq, $ss, $mfe;

5.4.2 MFE Prediction (object oriented interface)

#!/usr/bin/perl

use warnings;
use strict;

use RNA;

my $seql = "CGCAGGGAUACCCGCG";

(continues on next page)
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# create new fold_compound object
my $fc = new RNA::fold_compound($seql);

# compute minimum free energy (mfe) and corresponding structure
my ($ss, $mfe) = $fc->mfe();

# print output
printf "%s [ %6.2f 1\n", $ss, $mfe;

5.4.3 MFE Consensus Structure Prediction

use RNA;

# The RNA sequence alignment

my @sequences = (
"CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU" ,
"CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU" ,
"---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU"

E

# compute the consensus sequence
my $cons = RNA::consensus(\@sequences);

# predict Minmum Free Energy and corresponding secondary structure
my ($ss, $mfe) = RNA::alifold(\@sequences);

# print output
printf "%s\n%s [ %6.2f ]1\n", $cons, $ss, $mfe;

5.4.4 MFE Prediction (deviating from default settings)

use RNA;

# The RNA sequence
my $seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";

# create a new model details structure
my $md = new RNA::md(Q);

# change temperature and dangle model
$md->{temperature} = 20.0; # 20 Deg Celcius
$md->{dangles} = ig # Dangle Model 1

# create a fold compound
my $fc = new RNA::fold_compound($seq, $md);

# predict Minmum Free Energy and corresponding secondary structure
my ($ss, $mfe) = $fc->mfe();

# print sequence, structure and MFE
printf "%s\n¥%s [ %6.2f ]\n", $seq, $ss, $mfe;
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5.4.5 Fun with Soft Constraints

use strict;

use warnings;
use Data: :Dumper;
use RNA;

my $seql = "CUCGUCGCCUUAAUCCAGUGCGGGCGCUAGACAUCUAGUUAUCGCCGCAA™;

# Turn-off dangles globally
$RNA: :dangles = 0;

# Data structure that will be passed to our MaximumMatching() callback with two.

-, components:

# 1. a 'dummy' fold_compound to evaluate loop energies w/o constraints, 2. a fresh set.
—o0f energy parameters

my %mm_data = ( "dummy' => new RNA::fold_compound($seql), 'params' => new.

—RNA: :param() );

# Nearest Neighbor Parameter reversal functions
my %revert_NN = (

RNA: :DECOMP_PAIR_HP => sub { my ($i, $j, $k, $1, $f, $p)
—hp_loop($i, $j) - 100;},

RNA: :DECOMP_PAIR_IL => sub { my ($i, $j, $k, $1, $f, $p)
—int_loop($i, $j, $k, $1) - 1003},

RNA: :DECOMP_PAIR_ ML => sub { my ($i, $j, $k, $1, $f, $p) = @_; return - $p-—>
—{MLclosing} - $p->{MLintern}[0] - ($j - $i - $k + $1 - 2) * $p->{MLbase} - 100},

RNA: :DECOMP_ML_ML_STEM => sub { my ($i, $j, $k, $1, $f, $p) = @_; return - $p->
—{MLintern}[0] - ($1 - $k - 1) * $p->{MLbase}},

RNA: :DECOMP_ML_ML_ML => sub { my ($i, $j, $k, $1, $f, $p) = @_; return 0},

RNA: :DECOMP_ML_STEM => sub { my ($i, $j, $k, $1, $f, $p) = @_; return - $p->
—{MLintern}[0] - ($j - $i - $k + $1) * $p->{MLbase}},

RNA: :DECOMP_ML_ML => sub { my ($i, $j, $k, $1, $f, $p)
%k + $1) * $p->{MLbase}},

RNA: :DECOMP_ML_UP => sub { my ($i, $j, $k, $1, $£f, $p)
1) * $p->{MLbase}},

RNA: :DECOMP_EXT_STEM => sub { my ($i, $j, $k, $1, $f, $p) = @_; return - $f->E_
—ext_loop($k, $1)},

RNA: :DECOMP_EXT_EXT => sub { my ($i, $j, $k, $1, $f, $p) = @_; return 0},

RNA: :DECOMP_EXT_STEM_EXT => sub { my ($i, $j, $k, $1, $f, $p) = @_; return - $£f->
—E_ext_loop($i, $k)},

RNA: :DECOMP_EXT_EXT_STEM => sub { my ($i, $j, $k, $1, $f, $p) = @_; return : - $£f-
—>E_ext_loop($1l, $j)},

RNA: :DECOMP_EXT_EXT_STEM1 => sub { my ($i, $j, $k, $1, $f, $p) = @_; return - $f-
—>E_ext_loop($1l, $j - 1D},
DE

1l
[S)

; return - $f->eval_

@_; return - $f->eval_

@_; return - ($j - $i -

@_; return - ($j - $i +_

# Maximum Matching callback function (will be called by RNAlib in each decomposition.,
—Sstep)
sub MaximumMatching {

my ($i, $j, $k, $1, $d, $data) = @_;

return $revert_NN{$d}->($i, $j, $k, $1, $data->{'dummy'}, $data->{'params'}) if_
—defined $revert_NN{$d};

return 0;
}

# Create a 'fold_compound' for our sequence

(continues on next page)
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my $fc = new RNA::fold_compound($seql);

# Add maximum matching soft-constraints
$fc->sc_add_f(\&MaximumMatching) ;
$fc->sc_add_data(\%mm_data, undef);

# Call MFE algorithm
my ($s, $mm) = $fc->mfe();

# print result
printf("%s\n%s (MM: %d)\n", $seql, $s, - $mm);
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Below, you’ll find a listing of different sections that introduce the most common notations of sequence and structure
data, specifications of bioinformatics sequence and structure file formats, and various output file formats produced
by our library.

6.1 RNA Structures

Here, we describe the different notations and representations of RNA secondary structures used throughout our
library and prediction tools.

6.1.1 Dot-Bracket Notation

The Dot-Bracket notation as introduced already in the early times of the ViennaRNA Package denotes base pairs
by matching pairs of parenthesis () and unpaired nucleotides by dots ..

Note: This is the standard representation of a secondary structure in our library.

Based on that notation, more elaborate representations have been developed to include additional information, such
as the loop context a nucleotide belongs to and to annotated pseudo-knots.

Consider the following secondary structure in dot-bracket notation:

[(((- -(CCC.-232)).00

which, drawn as a secondary structure graph, looks like:

It is a stem-loop structure consisting of a an outer helix of 3 base pairs followed by an interior loop of size 3, a
second helix of length 4, and a hairpin loop of size 3.
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Pseudo Dot-Bracket Notation

Base pair probabilities are sometimes summarized in pseudo dot-bracket notation with the additional symbols ,,
[, {, }. Here, the usual (, ), ., represent bases with a strong preference (more than 2/3) to pair upstream (with
a partner further 3’), pair down-stream, or do not pair, respectively. {, }, and , are just the weaker version of the
above and | represents a base that is mostly paired but has pairing partners both upstream and downstream. In this
case opening and closing brackets do not need to match.

Extended Dot-Bracket Notation

A more generalized version of the original Dot-Bracket notation may use additional pairs of brackets, such as
<>, {}, and [], and matching pairs of uppercase/lowercase letters. This allows for anotating pseudo-knots, since
different pairs of brackets are not required to be nested.

The follwing annotations of a simple structure with two crossing helices of size 4 are equivalent:

<<<<[LLL....>>>1111
(CCCAAAA. .. .)))))aaaa
AAAA{{{{. .. .aaaa}}}}

See also...

vrna_db_pack (), vrna_db_unpack(), vrna_db_flatten(), vrna_db_flatten_to(),
vrna_db_from_ptable(), vrna_db_from_plist(), vrna_db_to_element_string(),
vrna_db_pk_remove ()

6.1.2 WUSS notation

The Washington University Secondary Structure (WUSS) notation is frequently used for consensus secondary
structures, e.g. in Stockholm 1.0 format

This notation allows for a fine-grained annotation of base pairs and unpaired nucleotides, including pseudo-knots.

See also...

WUSS notation in the infernal user guide at http://eddylab.org/infernal/Userguide.pdf

Below, you’ll find a list of secondary structure elements and their corresponding WUSS annotation.
* Base pairs

Nested base pairs are annotated by matching pairs of the symbols <>, (), {}, and []. Each of the matching

pairs of parenthesis have their special meaning, however, when used as input in our programs, e.g. structure

constraint, these details are usually ignored. Furthermore, base pairs that constitute as pseudo-knot are

denoted by letters from the latin alphabet and are, if not denoted otherwise, ignored entirely in our programs.
* Hairpin loops

Unpaired nucleotides that constitute the hairpin loop are indicated by underscores, _. Here is an example:

£<<<<< >>>>>

* Bulges and interior loops

Residues that constitute a bulge or interior loop are denoted by dashes, -:

[(cc——<<_____>>—)))
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¢ Multibranch loops

Unpaired nucleotides in multibranch loops are indicated by commas , :

[(((,,<< >>, << >>))) }

¢ External residues

Single stranded nucleotides in the exterior loop, i.e. not enclosed by any other pair are denoted by colons, ::

[<<<____>>>: 53 }

¢ Insertions

In cases where an alignment represents the consensus with a known structure, insertions relative to the known
structure are denoted by periods, .. Regions where local structural alignment was invoked, leaving regions
of both target and query sequence unaligned, are indicated by tildes, ~.

These symbols only appear in alignments of a known (query) structure annotation to a target sequence of
unknown structure.

¢ Pseudo-knots

The WUSS notation allows for annotation of pseudo-knots using pairs of upper-case/lower-case letters. Our
programs and library functions usually ignore pseudo-knots entirely treating them as unpaired nucleotides,
if not stated otherwise:

[<<<_AAA >>>aaa ]

See also...

vrna_db_from_WUSS()

6.1.3 Abstract Shapes

Abstract Shapes, introduced by Giegerich et al. [2004], collapse the secondary structure while retaining the nest-
edness of helices and hairpin loops.

The abstract shapes representation abstracts the structure from individual base pairs and their corresponding loca-
tion in the sequence, while retaining the inherent nestedness of helices and hairpin loops.

Below is a description of what is included in the abstract shapes abstraction for each respective level together with
an example structure:

CGUCUUAAACUCAUCACCGUGUGGAGCUGCGACCCUUCCCUAGAUUCGAAGACGAG
(CCCCC. . . CCC. - CCC. - 22200)) . . . CCC. . (G e . . )).23333000)) ..

Shape Description Result

Level

1 Most accurate - all loops and all unpaired [_[-[11-[-[1-11-

2 Nesting pattern for all loop types and unpaired regions in external loopand  [[_[1]1[_[]1_1]
multiloop

3 Nesting pattern for all loop types but no unpaired regions [CLI1C01]]

4 Helix nesting pattern in external loop and multiloop CLI1CCI]]

5 Most abstract - helix nesting pattern and no unpaired regions [[1011
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Note: Ourimplementations also provide the special Shape Level 0, which does not collapse any structural features
but simply convert base pairs and unpaired nucleotides into their corresponding set of symbols for abstract shapes.

See also...

vrna_abstract_shapes(), vrna_abstract_shapes_pt ()

6.1.4 Tree Representations

Secondary structures can be readily represented as trees, where internal nodes represent base pairs, and leaves rep-
resent unpaired nucleotides. The dot-bracket structure string already is a tree represented by a string of parenthesis
(base pairs) and dots for the leaf nodes (unpaired nucleotides).

Alternatively, one may find representations with two types of node labels, P for paired and U for unpaired; a dot
is then replaced by (U), and each closed bracket is assigned an additional identifier P. We call this the expanded
notation. In Fontana et al. [1993] a condensed representation of the secondary structure is proposed, the so-called
homeomorphically irreducible tree (HIT) representation. Here a stack is represented as a single pair of matching
brackets labeled P and weighted by the number of base pairs. Correspondingly, a contiguous strain of unpaired
bases is shown as one pair of matching brackets labeled U and weighted by its length. Generally any string consisting
of matching brackets and identifiers is equivalent to a plane tree with as many different types of nodes as there are
identifiers.

Shapiro [1988] proposed a coarse grained representation which does not retain the full information of the secondary
structure. He represents the different structure elements by single matching brackets and labels them as

¢ H (hairpin loop),

« I (interior loop),

* B (bulge),

* M (multi-loop), and
* S (stack).

We extend his alphabet by an extra letter for external elements E. Again these identifiers may be followed by a weight
corresponding to the number of unpaired bases or base pairs in the structure element. All tree representations
(except for the dot-bracket form) can be encapsulated into a virtual root (labeled R).

The following example illustrates the different linear tree representations used by the package:

Consider the secondary structure represented by the dot-bracket string (full tree):

[-((--(((---)))--((--))))-

which is the most convenient condensed notation used by our programs and library functions.
Then, the following tree representations are equivalent:

» Expanded tree:

[((U) (CC) (U CCCCU (U (WPHPIP) (U (U) (CCU) (UYPYPIP)P) (UIR)

* HIT representation ([Fontana ez al., 1993]):

[((Ul) ((U2) ((U3)P3) (U2) ((U2)P2)P2) (UL)R)

* Coarse Grained Tree Representation ([Shapiro, 1988]):

— Short (with root node R, without stem nodes S):
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[cancampr )

— Full (with root node R ):

[cc«(H)S)(m)S)M)S)R) ]

— Extended (with root node R, with external nodes E):

[((((((H)S)((H)S)M)S)E)R) }

— Weighted (with root node R, with external nodes E):

[((((((H3)53)((H2)52)M4)52)E2)R) }

The Expanded tree is rather clumsy and mostly included for the sake of completeness. The different versions of
Coarse Grained Tree Representations are variatios of Shapiro’s linear tree notation.

For the output of aligned structures from string editing, different representations are needed, where we put the label
on both sides. The above examples for tree representations would then look like:

a) (U0) (P(P(P(PCUU) (UU) (P(P(P(UV) (UU) (UUYP)IP)P) (UU) (UU) (P(PCUL) (U. ..
b) (UU) (P2(P2(U2U2) (P2 (U3U3)P3) (U2U2) (P2 (U2U2)P2)P2) (UU)P2) (UV)
c) (BQM(HH) (HH)M)B)
(S(B(SM(S(HH)S) (SCHH)S)M)S)B)S)
(ECS(B(S(M(S(HH)S) (S(HH)S)M)S)BIS)E)
d) (R(E2(S2(B1(S2(M4(S3(H3)S3) ((H2)S2)M4)S2)B1)S2)E2)R)

Aligned structures additionally contain the gap character _.

See also...

vrna_db_to_tree_string(), vrna_tree_string unweight (), vrna_tree_string_to_db()

6.2 Multiple Sequence Alignments (MSA)

6.2.1 ClustalW format

The ClustalW format is a relatively simple text file containing a single multiple sequence alignment of DNA, RNA,
or protein sequences. It was first used as an output format for the clustalw programs, but nowadays it may also be
generated by various other sequence alignment tools. The specification is straight forward:

¢ The first line starts with the words:

[CLUSTAL W }
or:
[CLUSTALW }

 After the above header there is at least one empty line
* Finally, one or more blocks of sequence data are following, where each block is separated by at least one
empty line.

Each line in a blocks of sequence data consists of the sequence name followed by the sequence symbols, separated
by at least one whitespace character. Usually, the length of a sequence in one block does not exceed 60 sym-
bols. Optionally, an additional whitespace separated cumulative residue count may follow the sequence symbols.
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Optionally, a block may be followed by a line depicting the degree of conservation of the respective alignment
columns.

Note: Sequence names and the sequences must not contain whitespace characters! Allowed gap symbols are the
hyphen (-), and dot (.).

Warning: Please note that many programs that output this format tend to truncate the sequence names to a
limited number of characters, for instance the first 15 characters. This can destroy the uniqueness of identifiers
in your MSA.

Here is an example alignment in ClustalW format:

CLUSTAL W (1.83) multiple sequence alignment

AL031296.1/85969-86120 a
—CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGUAACAAUACUUAC
AANU®1225121.1/438-603 o
—CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGUGACAAUACUUAC
AAWR02037329.1/29294-29150 ---CUCGACACCACU---
—GCCUCGGUUACCCAUCGGUGCAGUGCGGGUAGUAGUACCAAU

AL031296.1/85969-86120 UCUCGUUGGUGAUAAGGAACAGCU
AANU®1225121.1/438-603 UCUCGUUGGUGAUAAGGAACAGCU
AAWR02037329.1/29294-29150 GCUAAUUAGUUGUGAGGACCAACU

6.2.2 Stockholm 1.0 format

Here is an example alignment in Stockholm 1.0 format:

# STOCKHOLM 1.0

#=GF AC RF01293

#=GF ID ACA59

#=GF DE  Small nucleolar RNA ACA59

#=GF AU Wilkinson A

#=GF SE Predicted; WAR; Wilkinson A

#=GF SS Predicted; WAR; Wilkinson A

#=GF GA  43.00

#=GF TC  44.90

#=GF NC 40.30

#=GF TP Gene; snRNA; snoRNA; HACA-box;

#=GF BM cmbuild -F CM SEED

#=GF CB cmcalibrate --mpi CM

#=GF SM  cmsearch --cpu 4 --verbose --nohmmonly -E 1000 -Z 549862.597050 CM SEQDB
#=GF DR snoRNABase; ACA59;

#=GF DR SO; 0001263; ncRNA_gene;

#=GF DR GO; 0006396; RNA processing;

#=GF DR GO; 0005730; nucleolus;

#=GF RN [1]

#=GF RM 15199136

#=GF RT  Human box H/ACA pseudouridylation guide RNA machinery.
#=GF RA Kiss AM, Jady BE, Bertrand E, Kiss T
#=GF RL Mol Cell Biol. 2004;24:5797-5807.

(continues on next page)
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(continued from previous page)

#=GF WK Small_nucleolar_RNA
#=GF SQ 3

AL031296.1/85969-86120 a
—CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGUAACAAUACUUACUCUCGUUGGUGAUAAGGAACAGCU
AANU01225121.1/438-603 o
—CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGUGACAAUACUUACUCUCGUUGGUGAUAAGGAACAGCU
AAWR02037329.1/29294-29150 ---CUCGACACCACU---
—GCCUCGGUUACCCAUCGGUGCAGUGCGGGUAGUAGUACCAAUGCUAAUUAGUUGUGAGGACCAACU

#=GC SS_cons  ————- (O, <<<<<<<<<_ SSSSSS>5>> <<K<KK<K<K<L >>>
SO>>> 0 )))) i
#=GC RF

—CUGCcccaCAaCacuuguGCCUCaGUUACcCauagguGuAGUGaGgGuggcAaUACccaCcCucgUUgGuggUaAGGAaCAgCU
//

See also...

WUSS notation for legal characters and their interpretation in the consensus secondary structure line SS_cons.

6.2.3 FASTA (Pearson) format

Note: Sequence names must not contain whitespace characters. Otherwise, the parts after the first whitespace
will be dropped. The only allowed gap character is the hyphen (-).

Here is an example alignment in FASTA format:

>AL031296.1/85969-86120
CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGUAACAAUACUUAC
UCUCGUUGGUGAUAAGGAACAGCU

>AANU01225121.1/438-603
CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGUGACAAUACUUAC
UCUCGUUGGUGAUAAGGAACAGCU

>AAWR02037329.1/29294-29150
---CUCGACACCACU- - -GCCUCGGUUACCCAUCGGUGCAGUGCGGGUAGUAGUACCAAU
GCUAAUUAGUUGUGAGGACCAACU

6.2.4 MAF format

The multiple alignment format (MAF) is usually used to store multiple alignments on DNA level between entire
genomes. It consists of independent blocks of aligned sequences which are annotated by their genomic location.
Consequently, an MAF formatted MSA file may contain multiple records. MAF files start with a line:

[##maf

]

which is optionally extended by whitespace delimited key=value pairs. Lines starting with the character (#) are
considered comments and usually ignored.

A MAF block starts with character (a) at the beginning of a line, optionally followed by whitespace delimited
key=value pairs. The next lines start with character (s) and contain sequence information of the form:

[s src start size strand srcSize sequence
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where:
* src is the name of the sequence source
* start is the start of the aligned region within the source (0-based)
* size is the length of the aligned region without gap characters
e strand is either (+) or (-), depicting the location of the aligned region relative to the source
* srcSize is the size of the entire sequence source, e.g. the full chromosome
* sequence is the aligned sequence including gaps depicted by the hyphen (-)

Here is an example alignment in MAF format (bluntly taken from the UCSC Genome browser website):

##maf version=1 scoring=tba.v8

# tba.v8 (((Chuman chimp) baboon) (mouse rat))

# multiz.v7

# maf_project.v5 _tba_right.maf3 mouse _tba_C

# single_cov2.v4 single_cov2 /dev/stdin

a score=23262.0

s hgl6.chr7 27578828 38 + 158545518 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
s panTrol.chr6 28741140 38 + 161576975 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
s baboon 116834 38 + 4622798 AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG
s mm4.chr6 53215344 38 + 151104725 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG
s rn3.chr4 81344243 40 + 187371129 -AA-GGGGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTG
a score=5062.0

s hgl6.chr7 27699739 6 + 158545518 TAAAGA

s panTrol.chr6 28862317 6 + 161576975 TAAAGA

s baboon 241163 6 + 4622798 TAAAGA

s mm4.chr6 53303881 6 + 151104725 TAAAGA

s rn3.chr4 81444246 6 + 187371129 taagga

a score=6636.0

s hgl6.chr7 27707221 13 + 158545518 gcagctgaaaaca

s panTrol.chr6 28869787 13 + 161576975 gcagctgaaaaca

s baboon 249182 13 + 4622798 gcagctgaaaaca

s mm4.chr6 53310102 13 + 151104725 ACAGCTGAAAATA

6.3 Command Files

The RNAIib and many programs of the ViennaRNA Package can parse and apply data from so-called command
files. These commands may refer to structure constraints or even extensions of the RNA folding grammar (such as
Unstructured Domains).

Commands are given as a line of whitespace delimited data fields. The syntax we use extends the constraint
definitions used in the mfold or UNAfold software, where each line begins with a command character followed by
a set of positions.

However, we introduce several new commands, and allow for an optional loop type context specifier in form of a
sequence of characters, and an orientation flag that enables one to force a nucleotide to pair upstream, or down-
stream.
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6.3.1 Constraint commands

The following set of commands is recognized:
e F... Force
* P... Prohibit

. Conflicts/Context dependency

C
e A... Allow (for non-canonical pairs)
E

. Soft constraints for unpaired position(s), or base pair(s)

6.3.2 RNA folding grammar exensions

e UD... Add ligand binding using the Unstructured Domains feature

6.3.3 Specification of the loop type context

The optional loop type context specifier [LOOP] may be a combination of the following:
* E ... Exterior loop
e H... Hairpin loop
* I... Internal/Interior loop
e M... Multibranch loop
e A... All loops

For structure constraints, we additionally allow one to address base pairs enclosed by a particular kind of loop,
which results in the specifier [WHERE] which consists of [LOOP] plus the following character:

e i ... enclosed pair of an Interior loop
e m... enclosed pair of a Multibranch loop

If no [LOOP] or [WHERE] flags are set, all contexts are considered (equivalent to A ).

6.3.4 Controlling the orientation of base pairing

For particular nucleotides that are forced to pair, the following [ORIENTATION] flags may be used:
e U... Upstream
* D... Downstream

If no [ORIENTATION] flag is set, both directions are considered.

6.3.5 Sequence coordinates

Sequence positions of nucleotides/base pairs are 1-based and consist of three positions ¢, 7, and k. Alternativly,
four positions may be provided as a pair of two position ranges [¢ : j], and [k : ] using the - sign as delimiter
within each range, i.e. i-j, and k-1.
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6.3.6 Valid constraint commands

Below are resulting general cases that are considered valid constraints:

¢ “Forcing a range of nucleotide positions to be paired”:

[F i 0 k [WHERE] [ORIENTATION]

Description:

Enforces the set of k consecutive nucleotides starting at position ¢ to be paired. The optional loop type
specifier [WHERE] allows to force them to appear as closing/enclosed pairs of certain types of loops.

* “Forcing a set of consecutive base pairs to form”::

[F i j k [WHERE]

Description:

Enforces the base pairs (i, j), ..., (i+(k—1),j— (k—1)) to form. The optional loop type specifier [WHERE]
allows to specify in which loop context the base pair must appear.

* “Prohibiting a range of nucleotide positions to be paired”:

[P i 0 k [WHERE]

Description:

Prohibit a set of k consecutive nucleotides to participate in base pairing, i.e. make these positions unpaired.
The optional loop type specifier [WHERE] allows to force the nucleotides to appear within the loop of specific

types.

¢ “Probibiting a set of consecutive base pairs to form”:

[P i j k [WHERE]

Description:

Probibit the base pairs (%, j), . .., (i+(k—1),j— (k—1)) to form. The optional loop type specifier [WHERE]
allows to specify the type of loop they are disallowed to be the closing or an enclosed pair of.

* “Prohibiting two ranges of nucleotides to pair with each other”:

[p i-j k-1 [WHERE]

Description:

Prohibit any nucleotide p € [i : j] to pair with any other nucleotide ¢ € [k : I]. The optional loop type
specifier [WHERE] allows to specify the type of loop they are disallowed to be the closing or an enclosed pair
of.

* “Enforce a loop context for a range of nucleotide positions’:

[c i 0 k [WHERE]

Description:

This command enforces nucleotides to be unpaired similar to prohibiting nucleotides to be paired, as de-
scribed above. It too marks the corresponding nucleotides to be unpaired, however, the [WHERE] flag can be
used to enforce specfic loop types the nucleotides must appear in.

* “Remove pairs that conflict with a set of consecutive base pairs”:

[Cijk
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Description:

Remove all base pairs that conflict with a set of consecutive base pairs (4, j),...,(i+ (k—1),7 — (k—1)).
Two base pairs (4, 7) and (p, ¢) conflict with each otherif i < p < j < g, orp <i < q < j.

¢ “Allow a set of consecutive (non-canonical) base pairs to form”:

[A i j k [WHERE] }

Description:

This command enables the formation of the consecutive base pairs (, j),..., (i + (k—1),5 — (k—1)),no
matter if they are canonical, or non-canonical. In contrast to the above F and W commands, which remove
conflicting base pairs, the A command does not. Therefore, it may be used to allow non-canoncial base pair
interactions. Since the RNAlib does not contain free energy contributions F;; for non-canonical base pairs
(i,7), they are scored as the maximum of similar, known contributions. In terms of a Nussinov like scoring
function the free energy of non-canonical base pairs is therefore estimated as

7

FE;; = min k> max E;l.
(k,j)€{GC,CG,AU,UA,GU,UG}

max
(i,k)e{GC,CG,AU,UA,GU,UG}
The optional loop type specifier [WHERE] allows to specify in which loop context the base pair may appear.

* “Apply pseudo free energy to a range of unpaired nucleotide positions™:

[Ei@ke ]

Description:

Use this command to apply a pseudo free energy of e to the set of k consecutive nucleotides, starting at posi-
tion 7. The pseudo free energy is applied only if these nucleotides are considered unpaired in the recursions,
or evaluations, and is expected to be given in units of kcal - mol ",

* “Apply pseudo free energy to a set of consecutive base pairs”:

[Eijke ]

Description:

Use this command to apply a pseudo free energy of e to the set of base pairs (¢, j), . . ., (i+(k—1), j—(k—1)).
Energies are expected to be given in units of kcal - mol ™.

6.3.7 Valid domain extensions commands

¢ “Add ligand binding to unpaired motif (a.k.a. unstructured domains)”:

UD m e [LOOP]

Description:

Add ligand binding to unpaired sequence motif m (given in ITUPAC format, capital letters) with binding
energy e in particular loop type(s).

Example:

[UD AAA 5.0 A J

The above example applies a binding free energy of —5 kcal - mol~! for a motif AAA that may be present in
all loop types.
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6.4 Energy Parameters

6.4.1 Modified Bases

The functions vrna_sc_mod (), vrna_sc_mod_json() and alike implement an energy correction framework to
account for modified bases in the secondary structure predictions. To supply these functions with the energy
parameters and general specifications of the base modification, the following JSON data format may be used:

JSON data must consist of a header section modified_bases This header is an object with the mandatory keys:
* name specifying a name of the modified base
e unmodified that consists of a single upper-case letter of the unmodified version of this base,

* the one_letter_code key to specify which letter is used for the modified bases in the subsequent energy
parameters, and

* an array of pairing_partners’

The latter must be uppercase characters. An optional sources key may contain an array of related publications,
e.g. those the parameters have been derived from.

Next to the header may follow additional keys to specify the actual energy contributions of the modified base in
various loop contexts. All energy contributions must be specified in free energies AG in units of kcal - mol ™!, To
allow for rescaling of the free energies at temperatures that differ from the default (37°C'), enthalpy parameters A H
may be specified as well. Those, however are optional. The keys for free energy (at 37°C) and enthalpy parameters
have the suffixes _energies and _enthalpies, respectively.

The parser and underlying framework currently supports the following loop contexts:
* base pair stacks (via the stacking key prefix).

This key must point to an object with one key value pair for each stacking interaction data is provided for.
Here, the key consists of four upper-case characters denoting the interacting bases, where the the first two
represent one strand in 5’ to 3’ direction and the last two the opposite strand in 3’ to 5’ direction. The values
are energies in kcal - mol~!.

* terminal mismatches (via the mismatch key prefix).

This key points to an object with key value pairs for each mismatch energy parameter that is available. Keys
are 4 characters long nucleotide one-letter codes as used in base pair stacks above. The second and fourth
character denote the two unpaired mismatching bases, while the other two represent the closing base pair.

¢ dangling ends (via the dangle5 and dangle3 key prefixes).

The object behind these keys, again, consists of key value pairs for each dangling end energy parameter.
Keys are 3 characters long where the first two represent the two nucleotides that form the base pair, and the
third is the unpaired base that either stacks on the 3” or 5’ end of the enclosed part of the base pair.

* terminal pairs (via the terminal key prefix).

Terminal base pairs, such as AU or GU, sometimes receive an additional energy penalty. The object behind
this key may list energy parameters to apply whenever particular base pairs occur at the end of a helix.
Each of those parameters is specified as key value pair, where the key consists of two upper-case characters
denoting the terminal base pair.

Below is a JSON template specifying most of the possible input parameters. Actual energy parameter files can be
found in the source code tarball within the misc/ subdirectory.

{
"modified_base" : {
"name" : "My modification (M)",
"sources" : [
{
"authors" : "Author 1, Author 2",

(continues on next page)
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"title" : "UV-melting of modified oligos",
"journal" : "Some journal",
"year" : 2022,
"doi" : "10.0000/000000"
}
1o
"unmodified" : "G",
"pairing_partners" : [
g, AT
1,
"one_letter_code" : "M",
"fallback" : "G",
"stacking_energies" : {
"MAUU" : -1.2,
"AGMC" : -2.73
1
"stacking_enthalpies" : {
"MAUU" : -11.1,
"AGMC" : -9.73
1
"terminal_energies" : {
"MU" : 0.5,
"UM" : 0.5
1
"terminal_enthalpies" : {
"MU" : 2.0,
"UM" : 2.0
o
"mismatch_energies" : {
"CMGM" : -1.11,
"AGUM" : -0.73
1
"mismatch_enthalpies" : {
"CMGM" : -11.11,
"AGUM" : -7.73
3
"dangle5_energies" : {
"UAM" : -1.01
o
"dangle5_enthalpies" : {
"UAM" : -6.01
1,
"dangle3_energies" : {
"CGM" : -2.1,
"GCM" : -1.3
}
}
}

(continued from previous page)

An actual example of real-world data may look like

{

"modified_base" : {
"name" : "Pseudouridine",
"sources" : [
{

(continues on next page)
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(continued from previous page)

"authors": "Graham A. Hudson, Richard J. Bloomingdale, and Brent M. Znosko",
"title" : "Thermodynamic contribution and nearest-neighbor parameters of.
—pseudouridine-adenosine base pairs in oligoribonucleotides",
"journal” : "RNA 19:1474-1482",
"year" : 2013,
"doi" : "10.1261/rna.039610.113"
}
1,
"unmodified" : "U",
"pairing_partners" : [
npn
i
"one_letter_code" : "P",
"fallback" : "U",
"stacking_energies" : {
"APUA" : -2.8,
"CPGA" : -2.77,
"GPCA" : -3.29,
"UPAA" : -1.62,
"PAAU" : -2.10,
"PCAG" : -2.49,
"PGAC" : -2.2,
"PUAA" : -2.74
1
"stacking_enthalpies" : {
"APUA" : -22.08,
"CPGA" : -16.23,

"GPCA" : -24.07,
"UPAA" : -20.81,
"PAAU" : -12.47,
"PCAG" : -17.29,
"PGAC" : -11.19,
"PUAA" : -26.94
o
"terminal_energies" : {
"PA" : 0.31,
"AP" : 0.31
}’
"terminal_enthalpies" : {
"PA" : -2.04,
"AP" : -2.04
Fo
"duplexes" : {
"CGAPACGGCUAUGC" : {
"lengthl" : 7,
"length2" : 7,
"dG37" : -9.93,
"dG37_p" : -10.12
}l
"CGCPACGGCGAUGC" : {
"lengthl" : 7,
"length2" : 7,
"dG37" : -10.96,
"dG37_p" : -11.17
1,
"CGGPACGGCCAUGC" : {

(continues on next page)
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(continued from previous page)

"lengthl" : 7,

"length2" : 7,
"dG37" : -11.71,
"dG37_p" : -11.53

1,

"CGUPACGGCAAUGC" : {
"lengthl" : 7,
"length2" : 7,
"dG37" : -9.10,
"dG37_p" : -8.83

}l

"CGAPCCGGCUAGGC" : {
"lengthl" : 7,
"length2" : 7,
"dG37" : -11.92,
"dG37_p" : -11.53

1,

"CGCPCCGGCGAGGC" : {
"lengthl" : 7,

"length2" : 7,
"dG37" : -12.93,
"dG37_p" : -12.57

L

"CGGPCCGGCCAGGC" : {
"lengthl" : 7,
"length2" : 7,
"dG37" : -12.76,
"dG37_p" : -12.94

1,

"CGUPCCGGCAAGGC" : {
"lengthl" : 7,
"length2" : 7,
"dG37" : -9.76,
"dG37_p" : -10.24

3,

"CGAPGCGGCUACGC" : {
"lengthl" : 7,

"length2" : 7,
"dG37" i -11.45,
"dG37_p" : -11.40

e

"CGCPGCGGCGACGC" : {
"lengthl" : 7,
"length2" : 7,
"dG37" : -12.35,
"dG37_p" : -12.45

e

"CGGPGCGGCCACGC" : {
"lengthl" : 7,
"length2" : 7,
"dG37" : -12.59,
"dG37_p" : -12.81

e

"CGUPGCGGCAACGC" : {
"lengthl" : 7,
"length2" : 7,

(continues on next page)
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"dG37" : -10.
"dG37_p" : -10.

3,

"CGAPUCGGCUAAGC" :
"lengthl" : 7,
"length2" : 7,
"dG37" : -10
"dG37_p" : -10.

3,

"CGCPUCGGCGAAGC" :
"lengthl" : 7,
"length2" : 7,
"dG37" : -12
"dG37_p" : -11.

be

"CGGPUCGGCCAAGC" :
"lengthl" : 7,
"length2" : 7,
"dG37" : -12.
"dG37_p" : -12.

B

"CGUPUCGGCAAAGC" :
"lengthl" : 7,
"length2" : 7,
"dG37" i -9.
"dG37_p" : -9.

}l

"GCGCAPCGCGUA" :
"lengthl" : 6,
"length2" : 6,
"dG37" i -9.
"dG37_p" : -9.

B

"GCGCCPCGCGGA" :
"lengthl" : 6,
"length2" : 6,
"dG37" : -10
"dG37_p" : -10

e

"GCGCGPCGCGCA" :
"lengthl" : 6,
"length2" : 6,
"dG37" : -10
"dG37_p" : -10

e

"GCGCUPCGCGAA" :
"lengthl" : 6,
"length2" : 6,
"dG37" : -8.
"dG37_p" : -8.

3,

"PAGCGCAUCGCG" :
"lengthl" : 6,
"length2" : 6,
"dG37" . -8.
"dG37_p" : -8.

34,
11

.42,
86

.06,
91

51,
27

55,
50

(continued from previous page)

(continues on next page)
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(continued from previous page)

L

"PCGCGCAGCGCG" : {
"lengthl" : 6,
"length2" : 6,
"dG37" : -9.56,
"dG37_p" : -9.66

e

"PGGCGCACCGCG" : {
"lengthl" : 6,
"length2" : 6,
"dG37" : -10.30,
"dG37_p" : -10.27

3,

"PUGCGCAACGCG" : {
"lengthl" : 6,
"length2" : 6,
"dG37" : -9.77,
"dG37_p" : -9.65

}

}
}
}

6.4. Energy Parameters 225




ViennaRNA, Release 2.6.4

226 Chapter 6. 1/0 Formats



CHAPTER
SEVEN

CONCEPTS AND ALGORITHMS

Our library is grouped into several modules, each addressing different aspects of RNA secondary structure related
problems. This is an overview of the concepts and algorithms for which implementations can be found in this
library.

Almost all of them rely on the physics based Nearest Neighbor Model for RNA secondary structure prediction.

7.1 Free Energy Evaluation

Secondary structures are decomposed into individual loops to eventually evaluate their stability in terms of free
energy. Here, we demonstrate how this is done and which parts of the RNAlib API are dedicated to free energy
evaluation.

7.1.1 Energy Evaluation for Individual Loops

To assess the free energy contribution of a particular loop L within a secondary structure, two variants are provided
* The bare free energy E;, (usually in units of deka-calories, i.e. multiples of 10cal - mol™*, and

¢ The Boltzmann weight ¢ = exp(—pBE},) of the free energy Ey, (with 8 = %, gas constant R and tempera-
ture 1)

The latter is usually required for partition function computations.

Table of Contents

* General
» Exterior Loops
* Hairpin Loops

* Internal Loops

* Multibranch Loops
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General

Functions to evaluate the free energy of particular types of loops.

Functions

int vrna_eval_loop_pt (vrna_fold_compound_t *fc, int i, const short *pt)
#include <ViennaRNA/eval.h> Calculate energy of a loop.

SWIG Wrapper Notes:
This function is attached as method eval_loop_pt () to objects of type fold_compound. See,
e.g. RNA. fold_compound. eval_loop_pt() in the Python API .
Parameters
e fc — A vrna_fold_compound_t containing the energy parameters and model details
¢ i — position of covering base pair
* pt — the pair table of the secondary structure
Returns

free energy of the loop in 10cal/mol

int vrna_eval_loop_pt_v(vrna_fold_compound_t *fc, int i, const short *pt, int verbosity_level)
#include <ViennaRNA/eval.h> Calculate energy of a loop.

Parameters
e fc — A vrna_fold_compound_t containing the energy parameters and model details
¢ i — position of covering base pair
* pt — the pair table of the secondary structure
» verbosity_level — The level of verbosity of this function

Returns
free energy of the loop in 10cal/mol

Exterior Loops

Functions to evaluate the free energy contributions for exterior (external) loops.

Boltzmann weight (partition function) interface

typedef struct vrna_mx_pf_aux_el_s *vrna_mx_pf_aux_el_t

#include <ViennaRNA/loops/external.h> Auxiliary helper arrays for fast exterior loop computations.

See also:

vrna_exp_E_ext_fast_init(), vrna_exp_E_ext_fast_rotate(), vrna_exp_E_ext_fast_free(),
vrna_exp_E_ext_fast()
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FLT _OR_DBL vrna_exp_E_ext_stem(unsigned int type, int n5d, int n3d, vrna_exp_param_t *p)

#include <ViennaRNA/loops/external.h> Evaluate a stem branching off the exterior loop (Boltzmann
factor version)

Given a base pair (4,j) encoded by type, compute the energy contribution including dangling-
end/terminal-mismatch contributions. Instead of returning the energy contribution per-se, this function
returns the corresponding Boltzmann factor. If either of the adjacent nucleotides (¢ — 1) and (j + 1)
must not contribute stacking energy, the corresponding encoding must be —1.

See also:

vrna_E_ext_stem()

Parameters
* type — The base pair encoding

* n5d — The encoded nucleotide directly adjacent at the 5’ side of the base pair (may be
-1)

* n3d - The encoded nucleotide directly adjacent at the 3’ side of the base pair (may be
-1)
* p — The pre-computed energy parameters (Boltzmann factor version)
Returns

The Boltzmann weighted energy contribution of the introduced exterior-loop stem

vrna_mx_pf_aux_el_t vrna_exp_E_ext_fast_init (vrna_fold_compound_t *fc)
#include <ViennaRNA/loops/external.h>

void vrna_exp_E_ext_fast_rotate (vina_mx_pf_aux_el_t aux_mx)
#include <ViennaRNA/loops/external.h>

void vrna_exp_E_ext_fast_free(vrna_mx_pf_aux_el_t aux_mx)
#include <ViennaRNA/loops/external.h>

FLT_OR_DBL vrna_exp_E_ext_fast (vrna_fold_compound_t *fc, int i, int j, vina_mx_pf_aux_el_t
aux_mx)

#include <ViennaRNA/loops/external.h>

void vrna_exp_E_ext_fast_update (vrna_fold_compound_t *fc, int j, vina_mx_pf_aux_el_t aux_mx)
#include <ViennaRNA/loops/external.h>

Basic free energy interface

int vrna_E_ext_stem(unsigned int type, int n5d, int n3d, vrna_param_t *p)

#include <ViennaRNA/loops/external.h> Evaluate a stem branching off the exterior loop.

Given a base pair (7,j) encoded by type, compute the energy contribution including dangling-
end/terminal-mismatch contributions. Instead of returning the energy contribution per-se, this function
returns the corresponding Boltzmann factor. If either of the adjacent nucleotides (i — 1) and (j + 1)
must not contribute stacking energy, the corresponding encoding must be —1.

See also:

vrna_E_exp_stem()

Parameters

* type — The base pair encoding

7.1. Free Energy Evaluation 229



ViennaRNA, Release 2.6.4

¢ n5d - The encoded nucleotide directly adjacent at the 5’ side of the base pair (may be
-1

* n3d - The encoded nucleotide directly adjacent at the 3’ side of the base pair (may be
-1)

* p — The pre-computed energy parameters
Returns

The energy contribution of the introduced exterior-loop stem

int vrna_eval_ext_stem(vrna_fold_compound_t *fc, int i, int j)

#include <ViennaRNA/loops/external.h> Evaluate the free energy of a base pair in the exterior loop.

Evalue the free energy of a base pair connecting two nucleotides in the exterior loop and take hard
constraints into account.

Typically, this is simply dangling end contributions of the adjacent nucleotides, potentially a terminal
A-U mismatch penalty, and maybe some generic soft constraint contribution for that decomposition.

Note: For dangles == 1 || 3 this function also evaluates the three additional pairs (i + 1, j), (i,j - 1),
and (i + 1, j - 1) and returns the minimum for all four possibilities in total.

Parameters
» fc — Fold compound to work on (defines the model and parameters)
¢ i -5’ position of the base pair
e j — 3’ position of the base pair

Returns

Free energy contribution that arises when this pair is formed in the exterior loop

int vrna_E_ext_loop_5 (vrna_fold_compound_t *fc)
#include <ViennaRNA/loops/external.h>

int vrna_E_ext_loop_3 (vrna_fold_compound_t *fc, int i)
#include <ViennaRNA/loops/external.h>

Hairpin Loops

Functions to evaluate the free energy contributions for hairpin loops.

Basic free energy interface

int vena_E_hp_loop (vrna_fold_compound_t *fc, int i, int j)

#include <ViennaRNA/loops/hairpin.h> Evaluate the free energy of a hairpin loop and consider hard
constraints if they apply.

This function evaluates the free energy of a hairpin loop

In case the base pair is not allowed due to a constraint conflict, this function returns INF.

Note:  This function is polymorphic! The provided vrna_fold compound_t may be of type
VRNA_FC_TYPE_SINGLE or VRNA_FC_TYPE_COMPARATIVE
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Parameters
e fc —The vrna_fold_compound_t that stores all relevant model settings
e 1 —The 5’ nucleotide of the base pair (3’ to evaluate the pair as exterior hairpin loop)
e j — The 3’ nucleotide of the base pair (5’ to evaluate the pair as exterior hairpin loop)
Returns

The free energy of the hairpin loop in 10cal/mol

int vrna_E_ext_hp_loop (vrna_fold_compound_t *fc, int i, int j)

#include <ViennaRNA/loops/hairpin.h> Evaluate the free energy of an exterior hairpin loop and con-
sider possible hard constraints.

Note:  This function is polymorphic! The provided vrna_fold compound_t may be of type
VRNA_FC_TYPE_SINGLE or VRNA_FC_TYPE_COMPARATIVE

int vrna_eval_ext_hp_loop (vrna_fold_compound_t *fc, int i, int j)

#include <ViennaRNA/loops/hairpin.h> Evaluate free energy of an exterior hairpin loop.
int vrna_eval_hp_loop (vrna_fold_compound_t *fc, int i, int j)

#include <ViennaRNA/loops/hairpin.h> Evaluate free energy of a hairpin loop.

SWIG Wrapper Notes:

This function is attached as method eval_hp_loop() to objects of type fold_compound. See,
e.g. RNA. fold_compound. eval_hp_loop() in the Python API .

Note: This function is polymorphic! The provided vrna_fold_compound_t may be of type
VRNA_FC_TYPE_SINGLE or VRNA_FC_TYPE_COMPARATIVE

Parameters
e fc — The vrna_fold_compound_t for the particular energy evaluation
¢ 1 - 5’-position of the base pair
¢ j — 3’-position of the base pair

Returns
Free energy of the hairpin loop closed by (¢, 7) in deka-kal/mol

static int E_Hairpin(int size, int type, int sil, int sj1, const char *string, vrna_param_t *P)
#include <ViennaRNA/loops/hairpin.h> Compute the Energy of a hairpin-loop.

To evaluate the free energy of a hairpin-loop, several parameters have to be known. A general hairpin-
loop has this structure: where X-Y marks the closing pair [e.g. a (G,C) pair]. The length of this loop
is 6 as there are six unpaired nucleotides (al-a6) enclosed by (X,Y). The 5° mismatching nucleotide is
al while the 3’ mismatch is a6. The nucleotide sequence of this loop is “al.a2.a3.a4.a5.a6”

See also:

sca/e_pammeters(), vrna_param_t

Note: The parameter sequence should contain the sequence of the loop in capital letters of the nucleic
acid alphabet if the loop size is below 7. This is useful for unusually stable tri-, tetra- and hexa-loops
which are treated differently (based on experimental data) if they are tabulated.
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Warning:

Energy evaluation may change due to updates in global variable “tetra_loop”

Not (really) thread safe! A threadsafe implementation will replace this function in a future release!

Parameters
» size — The size of the loop (number of unpaired nucleotides)
* type — The pair type of the base pair closing the hairpin
e sil — The 5’-mismatching nucleotide
¢ sj1 — The 3’-mismatching nucleotide

« string — The sequence of the loop (May be NULL, otherwise mst be at least size + 2
long)

e P — The datastructure containing scaled energy parameters

Returns
The Free energy of the Hairpin-loop in dcal/mol

Boltzmann weight (partition function) interface

static FLT_OR_DBL exp_E_Hairpin(int u, int type, short sil, short sj1, const char *string,
vrna_exp_param_t *P)

—AG/kT

#include <ViennaRNA/loops/hairpin.h> Compute Boltzmann weight e of a hairpin loop.

See also:

get_scaled_pf_parameters(), vina_exp_param_t, E_Hairpin()

Note: multiply by scale[u+2]

Warning:

Energy evaluation may change due to updates in global variable “tetra_loop”

Not (really) thread safe! A threadsafe implementation will replace this function in a future release!

Parameters
* u-— The size of the loop (number of unpaired nucleotides)
* type — The pair type of the base pair closing the hairpin
¢ sil — The 5’-mismatching nucleotide
¢ sj1 - The 3’-mismatching nucleotide

¢ string — The sequence of the loop (May be NULL, otherwise mst be at least size + 2
long)

¢ P — The datastructure containing scaled Boltzmann weights of the energy parameters

Returns
The Boltzmann weight of the Hairpin-loop
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FLT_OR_DBL vrna_exp_E_hp_loop (vina_fold_compound_t *fc, int i, int j)

#include <ViennaRNA/loops/hairpin.h> High-Level function for hairpin loop energy evaluation (par-
tition function variant)

See also:

vrna_E_hp_loop() for it’s free energy counterpart

Note:  This function is polymorphic! The provided vrna_fold compound_t may be of type
VRNA_FC_TYPE_SINGLE or VRNA_FC_TYPE_COMPARATIVE

Internal Loops

Functions to evaluate the free energy contributions for internal (interior) loops.

Basic free energy interface

int vrna_E_int_loop (vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/internal.h>
int vrna_eval_int_loop (vrna_fold_compound_t *fc, int i, int j, int k, int 1)

#include <ViennaRNA/loops/internal.h> Evaluate the free energy contribution of an interior loop with
delimiting base pairs (7, j) and (k, ).

SWIG Wrapper Notes:

This function is attached as method eval_int_loop () to objects of type fold_compound. See,
e.g. RNA. fold_compound.eval_int_loop() in the Python API .

Note: This function is polymorphic, i.e. it accepts vrna_fold_compound_t of type
VRNA_FC_TYPE_SINGLE as well as VRNA_FC_TYPE_COMPARATIVE

int vrna_E_ext_int_loop (vina_fold_compound_t *fc, int i, int j, int *ip, int *iq)
#include <ViennaRNA/loops/internal.h>

int vrna_E_stack (vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/internal.h>

Boltzmann weight (partition function) interface

FLT_OR_DBL vrna_exp_E_int_loop (vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/internal.h>

FLT_OR_DBL vrna_exp_E_interior_loop (vrna_fold_compound_t *fc, int i, int j, int k, int 1)
#include <ViennaRNA/loops/internal.h>
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Multibranch Loops

Functions to evaluate the free energy contributions for mutlibranch loops.

Boltzmann weight (partition function) interface

typedef struct vrna_mx_pf_aux_ml_s *vrna_mx_pf_aux_ml_t

#include <ViennaRNA/loops/multibranch.h> Auxiliary helper arrays for fast exterior loop computa-
tions.

See also:

vrna_exp_E_ml_fast_init(), vrna_exp_E_ml_fast_rotate(), vrna_exp_E_ml_fast_free(),
vrna_exp_E_ml_fast()

FLT_OR_DBL vrna_exp_E_mb_loop_fast (vrna_fold_compound_t *fc, int i, int j,
vrna_mx_pf_aux_ml_t aux_mx)

#include <ViennaRNA/loops/multibranch.h>

vrna_mx_pf_aux_ml_t vrna_exp_E_ml_fast_init (vrna_fold_compound_t *fc)
#include <ViennaRNA/loops/multibranch.h>

void vrna_exp_E_ml_fast_rotate (vrna_mx_pf_aux_ml_t aux_mx)
#include <ViennaRNA/loops/multibranch.h>

void vrna_exp_E_ml_fast_free (vrna_mx_pf_aux_ml_t aux_mx)
#include <ViennaRNA/loops/multibranch.h>

const FLT_OR_DBL *vrna_exp_E_ml_fast_qam(vrna_mx_pf_aux_ml_t aux_mx)
#include <ViennaRNA/loops/multibranch.h>

const FLT_OR_DBL *vrna_exp_E_ml_fast_qqml (vrna_mx_pf_aux_ml_t aux_mx)
#include <ViennaRNA/loops/multibranch.h>

FLT OR_DBL vrna_exp_E_ml_fast (vrna_fold _compound_t *fc, inti, int j, vina_mx_pf aux_ml_t
aux_mx)

#include <ViennaRNA/loops/multibranch.h>

Basic free energy interface

int vrna_E_mb_loop_stack (vrna_fold_compound_t *fc, int i, int j)
#include <ViennaRNA/loops/multibranch.h> Evaluate energy of a multi branch helices stacking onto
closing pair (i,j)
Computes total free energy for coaxial stacking of (i.j) with (i+1.k) or (k+1.j-1)
int vena_E_mb_loop_fast (vrna_fold_compound_t *fc, int i, int j, int *dmlil, int *dmli2)
#include <ViennaRNA/loops/multibranch.h>
int E_ml_rightmost_stem(int i, int j, vrna_fold_compound_t *fc)
#include <ViennaRNA/loops/multibranch.h>
int vena_E_ml_stems_fast (vrna_fold_compound_t *fc, int i, int j, int *fmi, int *dmli)
#include <ViennaRNA/loops/multibranch.h>
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7.1.2 Energy Evaluation for Atomic Moves

Functions to evaluate the free energy change of a structure after application of (a set of) atomic moves

Here, atomic moves are not to be confused with moves of actual physical atoms. Instead, an atomic move is
considered the smallest conformational change a secondary structure can undergo to form another, distinguishable
structure. We currently support the following moves

* Opening (dissociation) of a single base pair
¢ Closing (formation) of a single base pair

« Shifting one pairing partner of an existing pair to a different location

Functions

float vrna_eval_move (vrna_fold_compound_t *fc, const char *structure, int m1, int m2)

#include <ViennaRNA/eval.h> Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

SWIG Wrapper Notes:

This function is attached as method eval_move () to objects of type fold_compound. See, e.g.
RNA. fold_compound. eval_move () in the Python API .

See also:

vrna_eval_move_pt()

Parameters
e fc — A vrna_fold_compound_t containing the energy parameters and model details
* structure - secondary structure in dot-bracket notation
* ml — first coordinate of base pair
e m2 — second coordinate of base pair
Returns

energy change of the move in kcal/mol (INF / 100. upon any error)

int vrna_eval_move_pt (vrna_fold_compound_t *fc, short *pt, int m1, int m2)

#include <ViennaRNA/eval.h> Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m?2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

SWIG Wrapper Notes:

This function is attached as method eval_move_pt () to objects of type fold_compound. See,
e.g. RNA. fold_compound. eval_move_pt () in the Python API .

See also:

vrna_eval_move()

Parameters

e fc — A vrna_fold_compound_t containing the energy parameters and model details
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* pt — the pair table of the secondary structure

e ml — first coordinate of base pair

* m2 — second coordinate of base pair
Returns

energy change of the move in 10cal/mol

int vrna_eval_move_pt_simple (const char *string, short *pt, int m1, int m2)
#include <ViennaRNA/eval h>

int vrna_eval_move_shift_pt (vrna_fold_compound_t *fc, vina_move_t *m, short *structure)
#include <ViennaRNA/eval h>

7.1.3 Evaluation of Structures
Several different functions to evaluate the free energy of a full secondary structure under a particular set of param-
eters and the Nearest Neighbor Energy model are available in RNAIib.
For most of them, two different forms of representations for the secondary structure may be used:
* The Dot-Bracket string
* A pair table representation

Furthermore, the evaluation functions are divided into basic and simplified variants, where basic functions require
the use of a vrna_fold_compound_t data structure holding the sequence string, and model configuration (settings
and parameters).

The simplified functions, on the other hand, provide often used default model settings that may be called directly
with only sequence and structure data.

Finally, verbose variants exist for some functions that allow one to print the (individual) free energy contributions
to some FILE stream.

Basic Energy Evaluation Interface with Dot-Bracket Structure String

float vrna_eval_structure (vina_fold_compound_t *fc, const char *structure)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given pair of structure and sequence (alignment). Model
details, energy parameters, and possibly soft constraints are used as provided via the parameter ‘fc’.
The vrna_fold_compound_t does not need to contain any DP matrices, but requires all most basic init
values as one would get from a call like this:

[fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);

SWIG Wrapper Notes:

This function is attached as method eval_structure () to objects of type fold_compound. See,
e.g. RNA. fold_compound. eval_structure() in the Python API .

See also:

vrna_eval_structure_pt(), vrna_eval_structure_verbose(), vrna_eval_structure_pt_verbose(),
vrna_fold_compound(), vrna_fold_compound_comparative(), vrna_eval_covar_structure()
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Note: Accepts  vrna_fold_compound_t of type VRNA_FC_TYPE SINGLE and
VRNA_FC_TYPE_COMPARATIVE

Parameters
e fc — A vrna_fold_compound_t containing the energy parameters and model details
* structure — Secondary structure in dot-bracket notation

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_covar_structure (vrna_fold_compound_t *fc, const char *structure)

#include <ViennaRNA/eval.h> Calculate the pseudo energy derived by the covariance scores of a set
of aligned sequences.

Consensus structure prediction is driven by covariance scores of base pairs in rows of the provided
alignment. This function allows one to retrieve the total amount of this covariance pseudo energy
scores. The vrna_fold_compound_t does not need to contain any DP matrices, but requires all most
basic init values as one would get from a call like this:

[fc = vrna_fold_compound_comparative(alignment, NULL, VRNA_OPTION_EVAL_ONLY); }

SWIG Wrapper Notes:

This function is attached as method eval_covar_structure() to objects of type
fold_compound. See, e.g. RNA.fold_compound.eval_covar_structure() in the Python
API .

See also:

vrna_fold_compound_comparative(), vina_eval_structure()

Note: Accepts vrna_fold_compound_t of type VRNA_FC_TYPE_COMPARATIVE only!

Parameters
¢ fc — A vrna_fold_compound_t containing the energy parameters and model details
* structure — Secondary (consensus) structure in dot-bracket notation

Returns

The covariance pseudo energy score of the input structure given the input sequence align-
ment in kcal/mol

float vrna_eval_structure_verbose (vina_fold_compound_t *fc, const char *structure, FILE *file)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA and print contri-
butions on a per-loop base.

This function is a simplyfied version of vrna_eval_structure_v() that uses the default verbosity level.

SWIG Wrapper Notes:

This function is attached as method eval_structure_verbose() to objects of type
fold_compound. See, e.g. RNA. fold_compound. eval_structure_verbose() in the Python
API .
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See also:

vrna_eval_structure_pt(), vina_eval_structure_verbose(), vrna_eval_structure_pt_verbose(),

Parameters
e fc — A vrna_fold_compound_t containing the energy parameters and model details
* structure — Secondary structure in dot-bracket notation
o file — A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_structure_v (vrna_fold_compound_t *fc, const char *structure, int verbosity_level,
FILE *file)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA and print contri-
butions on a per-loop base.

This function allows for detailed energy evaluation of a given sequence/structure pair. In contrast to
vrna_eval_structure() this function prints detailed energy contributions based on individual loops to
a file handle. If NULL is passed as file handle, this function defaults to print to stdout. Any positive
verbosity_level activates potential warning message of the energy evaluting functions, while values
> 1 allow for detailed control of what data is printed. A negative parameter verbosity_level turns
off printing all together.

Model details, energy parameters, and possibly soft constraints are used as provided via the parameter
‘fc’. The fold_compound does not need to contain any DP matrices, but all the most basic init values
as one would get from a call like this:

[fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY); ]

See also:

vrna_eval_structure_pt(), vina_eval_structure_verbose( ), vina_eval_structure_pt_verbose(),

Parameters
e fc — A vrna_fold_compound_t containing the energy parameters and model details
* structure — Secondary structure in dot-bracket notation
» verbosity_level — The level of verbosity of this function
e file - A file handle where this function should print to (may be NULL).
Returns

The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_structure_cstr (vrna_fold_compound_t *fc, const char *structure, int
verbosity_level, vrna_cstr_t output_stream)

#include <ViennaRNA/eval h>
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Basic Energy Evaluation Interface with Structure Pair Table

int vrna_eval_structure_pt (vrna_fold_compound_t *fc, const short *pt)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is
provided in pair_table format as obtained from vrna_ptable(). Model details, energy parameters, and
possibly soft constraints are used as provided via the parameter ‘fc’. The fold_compound does not need
to contain any DP matrices, but all the most basic init values as one would get from a call like this:

[fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);

SWIG Wrapper Notes:

This function is attached as method eval_structure_pt() to objects of type fold_compound.
See, e.g. RNA. fold_compound. eval_structure_pt() in the Python API .

See also:

vrna_ptable(), vrna_eval_structure(), vrna_eval_structure_pt_verbose()

Parameters
e fc — A vrna_fold_compound_t containing the energy parameters and model details
* pt — Secondary structure as pair_table

Returns

The free energy of the input structure given the input sequence in 10cal/mol

int vrna_eval_structure_pt_verbose (vrna_fold_compound_t *fc, const short *pt, FILE *file)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function is a simplyfied version of vina_eval_structure_simple_v() that uses the default verbosity
level.

SWIG Wrapper Notes:

This function is attached as method eval_structure_pt_verbose() to objects of type
fold_compound. See, e.g. RNA.fold_compound.eval_structure_pt_verbose() in the
Python API .

See also:

vrna_eval_structure_pt_v(), vrna_ptable(), vina_eval_structure_pt(), vrna_eval_structure_verbose()

Parameters
e fc — A vrna_fold_compound_t containing the energy parameters and model details
* pt — Secondary structure as pair_table
e file - A file handle where this function should print to (may be NULL).

Returns

The free energy of the input structure given the input sequence in 10cal/mol

int vrna_eval_structure_pt_v(vrna_fold_compound_t *fc, const short *pt, int verbosity_level, FILE
*file)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is
provided in pair_table format as obtained from vrna_ptable(). Model details, energy parameters, and
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possibly soft constraints are used as provided via the parameter ‘fc’. The fold_compound does not need
to contain any DP matrices, but all the most basic init values as one would get from a call like this:

[fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY); ]

In contrast to vrna_eval_structure_pt() this function prints detailed energy contributions based on in-
dividual loops to a file handle. If NULL is passed as file handle, this function defaults to print to
stdout. Any positive verbosity_level activates potential warning message of the energy evaluting
functions, while values > 1 allow for detailed control of what data is printed. A negative parameter
verbosity_level turns off printing all together.

See also:

vrna_ptable(), vrna_eval_structure_pt(), vrna_eval_structure_verbose()

Parameters
e fc — A vrna_fold_compound_t containing the energy parameters and model details
* pt — Secondary structure as pair_table
» verbosity_level — The level of verbosity of this function
e file - A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in 10cal/mol

Simplified Energy Evaluation with Sequence and Dot-Bracket Strings

float vrna_eval_structure_simple (const char *string, const char *structure)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair. In contrast to
vrna_eval_structure() this function assumes default model details and default energy parameters in
order to evaluate the free energy of the secondary structure. Therefore, it serves as a simple interface
function for energy evaluation for situations where no changes on the energy model are required.

SWIG Wrapper Notes:

In the target scripting language, this function serves as a wrapper for
vrna_eval_structure_simple_v() and, thus, allows for two additional, optional arguments,
the verbosity level and a file handle which default to VRNA_VERBOSITY_QUIET and NULL,
respectively.. See, e.g. RNA. eval_structure_simple() in the Python API .

See also:
vrna_eval_structure(), vrna_eval_structure_pt(), vrna_eval_structure_verbose(),
vrna_eval_structure_pt_verbose(),
Parameters
¢ string — RNA sequence in uppercase letters
» structure — Secondary structure in dot-bracket notation

Returns
The free energy of the input structure given the input sequence in kcal/mol
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float vrna_eval_circ_structure(const char *string, const char *structure)

#include <ViennaRNA/eval.h> Evaluate the free energy of a sequence/structure pair where the se-
quence is circular.

SWIG Wrapper Notes:

In the target scripting language, this function serves as a wrapper for vina_eval_circ_structure_v()
and, thus, allows for two additional, optional arguments, the verbosity level and a file han-
dle which default to VRNA_VERBOSITY_QUIET and NULL, respectively.. See, e.g. RNA.
eval_circ_structure() in the Python API .

See also:
vrna_eval_structure_simple(), vrna_eval_gquad_structure(), vrna_eval_circ_consensus_structure(),
vrna_eval_circ_structure_v(), vrna_eval_structure()
Parameters
¢ string — RNA sequence in uppercase letters
* structure — Secondary structure in dot-bracket notation
Returns

The free energy of the structure given the circular input sequence in kcal/mol

float vrna_eval_gquad_structure (const char *string, const char *structure)

#include <ViennaRNA/eval.h> Evaluate the free energy of a sequence/structure pair where the structure
may contain G-Quadruplexes.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
T o S

SWIG Wrapper Notes:

In the target scripting language, this function serves as a wrapper for
vrna_eval_gquad_structure_v() and, thus, allows for two additional, optional arguments,
the verbosity level and a file handle which default to VRNA_VERBOSITY_QUIET and NULL,
respectively.. See, e.g. RNA. eval_gquad_structure() in the Python API .

See also:
vrna_eval_structure_simple(), vrna_eval_circ_structure(), vrna_eval_gquad_consensus_structure(),
vrna_eval_gquad_structure_v(), vrna_eval_structure()
Parameters
» string — RNA sequence in uppercase letters
» structure — Secondary structure in dot-bracket notation
Returns

The free energy of the structure including contributions of G-quadruplexes in kcal/mol

float vrna_eval_circ_gquad_structure (const char *string, const char *structure)

#include <ViennaRNA/eval.h> Evaluate the free energy of a sequence/structure pair where the se-
quence is circular and the structure may contain G-Quadruplexes.
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G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (°.”) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
T e

SWIG Wrapper Notes:

In the target scripting language, this function serves as a wrapper for
vrna_eval_circ_gquad_structure_v() and, thus, allows for two additional, optional argu-
ments, the verbosity level and a file handle which default to VRNA_VERBOSITY_QUIET and
NULL, respectively.. See, e.g. RNA. eval_circ_gquad_structure() in the Python API .

See also:

vrna_eval_structure_simple(), vrna_eval_circ_gquad_consensus_structure(),
vrna_eval_circ_gquad_structure_yv(), vrna_eval_structure()

Parameters
¢ string — RNA sequence in uppercase letters

* structure — Secondary structure in dot-bracket notation

Returns
The free energy of the structure including contributions of G-quadruplexes in kcal/mol

float vrna_eval_structure_simple_verbose (const char *string, const char *structure, FILE *file)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA and print contri-
butions per loop.

This function is a simplyfied version of vina_eval_structure_simple_y() that uses the default verbosity
level.

See also:

vrna_eval_structure_simple_v(), vrna_eval_structure_verbose(), vrna_eval_structure_pt(),
vrna_eval_structure_verbose(), vina_eval_structure_pt_verbose()

Parameters
¢ string — RNA sequence in uppercase letters
* structure — Secondary structure in dot-bracket notation
e file - A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_structure_simple_v(const char *string, const char *structure, int verbosity_level,
FILE *file)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA and print contri-
butions per loop.

This function allows for detailed energy evaluation of a given sequence/structure pair. In contrast to
vrna_eval_structure() this function prints detailed energy contributions based on individual loops to
a file handle. If NULL is passed as file handle, this function defaults to print to stdout. Any positive
verbosity_level activates potential warning message of the energy evaluting functions, while values
> 1 allow for detailed control of what data is printed. A negative parameter verbosity_level turns
off printing all together.
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In contrast to vrna_eval_structure_verbose() this function assumes default model details and default
energy parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves as
a simple interface function for energy evaluation for situations where no changes on the energy model
are required.

SWIG Wrapper Notes:

This function is available through an overloaded version of vrna_eval_structure_simple(). The
last two arguments for this function are optional and default to VRNA_VERBOSITY _QUIET and
NULL, respectively. See, e.g. RNA. eval_structure_simple () in the Python API .

See also:

vrna_eval_structure_verbose(), vrna_eval_structure_pt(), vrna_eval_structure_pt_verbose(),

Parameters
¢ string — RNA sequence in uppercase letters
* structure — Secondary structure in dot-bracket notation
» verbosity_level — The level of verbosity of this function
e file - A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_circ_structure_v(const char *string, const char *structure, int verbosity_level, FILE
*file)

#include <ViennaRNA/eval h> Evaluate free energy of a sequence/structure pair, assume sequence to
be circular and print contributions per loop.

This function is the same as vrna_eval_structure_simple_v() but assumes the input sequence to be
circularized.

SWIG Wrapper Notes:

This function is available through an overloaded version of vrna_eval_circ_structure(). The last
two arguments for this function are optional and default to VRNA_VERBOSITY QUIET and NULL,
respectively. See, e.g. RNA.eval_circ_structure() in the Python API .

See also:

vrna_eval_structure_simple_v(), virna_eval_circ_structure(), vrna_eval_structure_verbose()

Parameters

¢ string — RNA sequence in uppercase letters

* structure — Secondary structure in dot-bracket notation

» verbosity_level — The level of verbosity of this function

e file - A file handle where this function should print to (may be NULL).
Returns

The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_gquad_structure_v(const char *string, const char *structure, int verbosity_level,
FILE *file)

#include <ViennaRNA/eval.h> Evaluate free energy of a sequence/structure pair, allow for G-
Quadruplexes in the structure and print contributions per loop.
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This function is the same as vrna_eval_structure_simple_v() but allows for annotated G-Quadruplexes
in the dot-bracket structure input.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
I

SWIG Wrapper Notes:

This function is available through an overloaded version of vrna_eval_gquad_structure(). The
last two arguments for this function are optional and default to VRNA_VERBOSITY_QUIET and
NULL, respectively. See, e.g. RNA. eval_gquad_structure() in the Python API .

See also:

vrna_eval_structure_simple_v(), virna_eval_gquad_structure(), vrna_eval_structure_verbose()

Parameters

¢ string — RNA sequence in uppercase letters

* structure — Secondary structure in dot-bracket notation

» verbosity_level — The level of verbosity of this function

e file - A file handle where this function should print to (may be NULL).
Returns

The free energy of the input structure given the input sequence in kcal/mol

float vrna_eval_circ_gquad_structure_v(const char *string, const char *structure, int
verbosity_level, FILE *file)

#include <ViennaRNA/eval.h> Evaluate free energy of a sequence/structure pair, assume sequence to
be circular, allow for G-Quadruplexes in the structure, and print contributions per loop.

This function is the same as vrna_eval_structure_simple_v() but assumes the input sequence to be
circular and allows for annotated G-Quadruplexes in the dot-bracket structure input.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (*.”) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
I s

SWIG Wrapper Notes:

This function is available through an overloaded version of vrna_eval_circ_gquad_structure().
The last two arguments for this function are optional and default to VRNA_VERBOSITY_QUIET
and NULL, respectively. See, e.g. RNA. eval_circ_gquad_structure() in the Python API .
Parameters

¢ string — RNA sequence in uppercase letters

» structure — Secondary structure in dot-bracket notation

» verbosity_level — The level of verbosity of this function

e file - A file handle where this function should print to (may be NULL).
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Returns
The free energy of the input structure given the input sequence in kcal/mol

Simplified Energy Evaluation with Sequence Alighments and Consensus Structure Dot-
Bracket String

float vrna_eval_consensus_structure_simple(const char **alignment, const char *structure)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA sequence align-
ment.

This function allows for energy evaluation for a given multiple sequence alignment and consensus
structure pair. In contrast to vrna_eval_structure() this function assumes default model details and
default energy parameters in order to evaluate the free energy of the secondary structure. Therefore,
it serves as a simple interface function for energy evaluation for situations where no changes on the
energy model are required.

SWIG Wrapper Notes:

This function is available through an overloadeded version of vina_eval_structure_simple(). Sim-
ply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure
as second argument. See, e.g. RNA. eval_structure_simple() in the Python API .

See also:

vrna_eval_covar_structure(), vrna_eval_structure(), vrna_eval_structure_pt(),
vrna_eval_structure_verbose(), vina_eval_structure_pt_verbose()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
¢ alignment — RNA sequence alignment in uppercase letters and hyphen (‘-”) to denote
gaps
* structure — Consensus Secondary structure in dot-bracket notation

Returns
The free energy of the consensus structure given the input alignment in kcal/mol

float vrna_eval_circ_consensus_structure (const char **alignment, const char *structure)

#include <ViennaRNA/eval.h> Evaluate the free energy of a multiple sequence alignment/consensus
structure pair where the sequences are circular.

SWIG Wrapper Notes:

This function is available through an overloadeded version of vina_eval_circ_structure(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure
as second argument. See, e.g. RNA. eval_circ_structure() in the Python API .

See also:
vrna_eval_covar_structure(), vrna_eval_consensus_structure_simple(),
vrna_eval_gquad_consensus_structure(), vrna_eval_circ_structure(),

vrna_eval_circ_consensus_structure_v(), vina_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.
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Parameters

¢ alignment — RNA sequence alignment in uppercase letters

* structure — Consensus secondary structure in dot-bracket notation
Returns

The free energy of the consensus structure given the circular input sequence in kcal/mol

float vrna_eval_gquad_consensus_structure(const char **alignment, const char *structure)

#include <ViennaRNA/eval.h> Evaluate the free energy of a multiple sequence alignment/consensus
structure pair where the structure may contain G-Quadruplexes.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.") as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
T o S

SWIG Wrapper Notes:

This function is available through an overloadeded version of vina_eval_gquad_structure(). Sim-
ply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure
as second argument. See, e.g. RNA. eval_gquad_structure() in the Python API .

See also:
vrna_eval_covar_structure(), vrna_eval_consensus_structure_simple(),
vrna_eval_circ_consensus_structure(), vrna_eval_gquad_structure(),

vrna_eval_gquad_consensus_structure_v(), vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
* alignment — RNA sequence alignment in uppercase letters
» structure — Consensus secondary structure in dot-bracket notation

Returns
The free energy of the consensus structure including contributions of G-quadruplexes in
kecal/mol

float vrna_eval_circ_gquad_consensus_structure (const char **alignment, const char *structure)

#include <ViennaRNA/eval.h> Evaluate the free energy of a multiple sequence alignment/consensus
structure pair where the sequence is circular and the structure may contain G-Quadruplexes.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.”) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
I
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SWIG Wrapper Notes:

This function is available through an overloadeded version of vrna_eval_circ_gquad_structure().
Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus
structure as second argument. See, e.g. RNA.eval_circ_gquad_structure() in the Python

API .
See also:
vrna_eval_covar_structure(), vrna_eval_consensus_structure_simple(),
vrna_eval_circ_consensus_structure(), vrna_eval_gquad_structure(),

vrna_eval_circ_gquad_consensus_structure_v(), vina_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
* alignment — RNA sequence alignment in uppercase letters
* structure — Consensus secondary structure in dot-bracket notation

Returns

The free energy of the consensus structure including contributions of G-quadruplexes in
kcal/mol

float vrna_eval_consensus_structure_simple_verbose (const char **alignment, const char
*structure, FILE *file)

#include <ViennaRNA/eval.h> Evaluate the free energy of a consensus structure for an RNA sequence
alignment and print contributions per loop.

This function is a simplyfied version of vina_eval_consensus_structure_simple_v() that uses the default
verbosity level.

See also:

vrna_eval_consensus_structure_simple_v(), vrna_eval_structure_verbose(),
vrna_eval_structure_pt(), vina_eval_structure_pt_verbose()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters

¢ alignment — RNA sequence alignment in uppercase letters. Gaps are denoted by
hyphens (*-”)

» structure — Consensus secondary structure in dot-bracket notation
e file — A file handle where this function should print to (may be NULL).

Returns
The free energy of the conensus structure given the aligned input sequences in kcal/mol

float vrna_eval_consensus_structure_simple_v(const char **alignment, const char *structure, int
verbosity_level, FILE *file)

#include <ViennaRNA/eval.h> Evaluate the free energy of a consensus structure for an RNA sequence
alignment and print contributions per loop.
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This function allows for detailed energy evaluation of a given sequence alignment/consensus structure
pair. In contrast to vina_eval_consensus_structure_simple() this function prints detailed energy con-
tributions based on individual loops to a file handle. If NULL is passed as file handle, this function
defaults to print to stdout. Any positive verbosity_level activates potential warning message of
the energy evaluting functions, while values > 1 allow for detailed control of what data is printed. A
negative parameter verbosity_level turns off printing all together.

SWIG Wrapper Notes:

This function is available through an overloaded version of vina_eval_structure_simple(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET
and NULL, respectively. See, e.g. RNA. eval_structure_simple() in the Python API .

See also:

vrna_eval_consensus_structure(), vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters

¢ alignment — RNA sequence alignment in uppercase letters. Gaps are denoted by
hyphens (‘-")

» structure — Consensus secondary structure in dot-bracket notation
* verbosity_level — The level of verbosity of this function
» file — A file handle where this function should print to (may be NULL).

Returns
The free energy of the consensus structure given the sequence alignment in kcal/mol

float vrna_eval_circ_consensus_structure_v(const char **alignment, const char *structure, int

verbosity_level, FILE *file)
#include <ViennaRNA/eval.h> Evaluate the free energy of a consensus structure for an alignment of

circular RNA sequences and print contributions per loop.

This function is identical with vrna_eval_consensus_structure_simple_v() but assumed the aligned
sequences to be circular.

SWIG Wrapper Notes:

This function is available through an overloaded version of vrna_eval_circ_structure(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET
and NULL, respectively. See, e.g. RNA. eval_circ_structure() in the Python API .

See also:

vrna_eval_consensus_structure_simple_v(), vrna_eval_circ_consensus_structure(),
vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters
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¢ alignment — RNA sequence alignment in uppercase letters. Gaps are denoted by
hyphens (*-”)

* structure — Consensus secondary structure in dot-bracket notation

* verbosity_level — The level of verbosity of this function

» file — A file handle where this function should print to (may be NULL).
Returns

The free energy of the consensus structure given the sequence alignment in kcal/mol

float vrna_eval_gquad_consensus_structure_v(const char **alignment, const char *structure, int
verbosity_level, FILE *file)

#include <ViennaRNA/eval.h> Evaluate the free energy of a consensus structure for an RNA sequence
alignment, allow for annotated G-Quadruplexes in the structure and print contributions per loop.

This function is identical with vina_eval_consensus_structure_simple_v() but allows for annotated G-
Quadruplexes in the consensus structure.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.") as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
T o S

SWIG Wrapper Notes:

This function is available through an overloaded version of vrna_eval_gquad_structure(). Simply
pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as
second argument. The last two arguments are optional and default to VRNA_VERBOSITY_QUIET
and NULL, respectively. See, e.g. RNA. eval_gquad_structure() in the Python API .

See also:

vrna_eval_consensus_structure_simple_v(), vrna_eval_gquad_consensus_structure(),
vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters

e alignment — RNA sequence alignment in uppercase letters. Gaps are denoted by
hyphens (‘-")

» structure — Consensus secondary structure in dot-bracket notation
* verbosity_level — The level of verbosity of this function
» file — A file handle where this function should print to (may be NULL).

Returns
The free energy of the consensus structure given the sequence alignment in kcal/mol

float vrna_eval_circ_gquad_consensus_structure_v(const char **alignment, const char
*structure, int verbosity_level, FILE *file)

#include <ViennaRNA/eval.h> Evaluate the free energy of a consensus structure for an alignment of
circular RNA sequences, allow for annotated G-Quadruplexes in the structure and print contributions
per loop.
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This function is identical with vrna_eval_consensus_structure_simple_v() but assumes the sequences
in the alignment to be circular and allows for annotated G-Quadruplexes in the consensus structure.

G-Quadruplexes are annotated as plus signs (‘+’) for each G involved in the motif. Linker sequences
must be denoted by dots (‘.) as they are considered unpaired. Below is an example of a 2-layer G-
quadruplex:

GGAAGGAAAGGAGG
I

SWIG Wrapper Notes:

This function is available through an overloaded version of vrna_eval_circ_gquad_structure().
Simply pass a sequence alignment as list of strings (including gaps) as first, and
the consensus structure as second argument. The last two arguments are optional
and default to VRNA_VERBOSITY QUIET and NULL, respectively.  See, e.g.  RNA.
eval_circ_gquad_structure() in the Python API .

See also:

vrna_eval_consensus_structure_simple_v(), vrna_eval_circ_gquad_consensus_structure(),
vrna_eval_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters

e alignment — RNA sequence alignment in uppercase letters. Gaps are denoted by
hyphens (*-”)

» structure — Consensus secondary structure in dot-bracket notation
* verbosity_level — The level of verbosity of this function
» file — A file handle where this function should print to (may be NULL).

Returns
The free energy of the consensus structure given the sequence alignment in kcal/mol

Simplified Energy Evaluation with Sequence String and Structure Pair Table

int vrna_eval_structure_pt_simple(const char *string, const short *pt)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

In contrast to vrna_eval_structure_pt() this function assumes default model details and default energy
parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves as a
simple interface function for energy evaluation for situations where no changes on the energy model
are required.

SWIG Wrapper Notes:

In the target scripting language, this function serves as a wrapper for vina_eval_structure_pt_v()
and, thus, allows for two additional, optional arguments, the verbosity level and a file han-
dle which default to VRNA_VERBOSITY _QUIET and NULL, respectively. See, e.g. RNA.
eval_structure_pt_simple() in the Python API .

See also:

vrna_ptable(), vina_eval_structure_simple(), vina_eval_structure_pt()
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Parameters
¢ string — RNA sequence in uppercase letters
* pt — Secondary structure as pair_table
Returns

The free energy of the input structure given the input sequence in 10cal/mol

int vrna_eval_structure_pt_simple_verbose(const char *string, const short *pt, FILE *file)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function is a simplyfied version of vrna_eval_structure_pt_simple_v() that uses the default ver-
bosity level.

See also:
vrna_eval_structure_pt_simple_v(), vrna_ptable(), vrna_eval_structure_pt_verbose(),
vrna_eval_structure_simple()
Parameters
¢ string — RNA sequence in uppercase letters
* pt — Secondary structure as pair_table
» file — A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in 10cal/mol

int vrna_eval_structure_pt_simple_v(const char *string, const short *pt, int verbosity_level, FILE
*file)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is
provided in pair_table format as obtained from vrna_ptable(). Model details, energy parameters, and
possibly soft constraints are used as provided via the parameter ‘fc’. The fold_compound does not need
to contain any DP matrices, but all the most basic init values as one would get from a call like this:

[fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY); }

In contrast to vima_eval_structure_pt_verbose() this function assumes default model details and default
energy parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves as
a simple interface function for energy evaluation for situations where no changes on the energy model
are required.

See also:

vrna_ptable(), vina_eval_structure_pt_v(), vrna_eval_structure_simple()

Parameters
¢ string — RNA sequence in uppercase letters
* pt — Secondary structure as pair_table
» verbosity_level — The level of verbosity of this function
» file — A file handle where this function should print to (may be NULL).

Returns
The free energy of the input structure given the input sequence in 10cal/mol
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Simplified Energy Evaluation with Sequence Alignment and Consensus Structure Pair Table

int vrna_eval_consensus_structure_pt_simple(const char **alignment, const short *pt)

#include <ViennaRNA/eval.h> Evaluate the Free Energy of a Consensus Secondary Structure given a
Sequence Alignment.

SWIG Wrapper Notes:

This function is available through an overloadeded version of vrna_eval_structure_pt_simple().
Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus
structure as second argument. See, e.g. RNA.eval_structure_pt_simple() in the Python
API .

See also:

vrna_eval_consensus_structure_simple(), vrna_eval_structure_pt(), vrna_eval_structure(),
vrna_eval_covar_structure()

Note: The free energy returned from this function already includes the covariation pseudo energies
that is used fir comparative structure prediction within this library.

Parameters

e alignment — RNA sequence alignment in uppercase letters. Gaps are denoted by
hyphens (‘-")

* pt — Secondary structure in pair table format

Returns
Free energy of the consensus structure in 10cal/mol

int vrna_eval_consensus_structure_pt_simple_verbose(const char **alignment, const short *pt,
FILE *file)

#include <ViennaRNA/eval h>

int vrna_eval_consensus_structure_pt_simple_v(const char **alignment, const short *pt, int
verbosity_level, FILE *file)

#include <ViennaRNA/eval.h>
SWIG Wrapper Notes:

This function is available through an overloaded version of vrna_eval_structure_pt_simple().
Simply pass a sequence alignment as list of strings (including gaps) as first, and
the consensus structure as second argument. The last two arguments are optional
and default to VRNA_VERBOSITY QUIET and NULL, respectively.  See, e.g.  RNA.
eval_structure_pt_simple() in the Python API .

Defines

VRNA_VERBOSITY_QUIET
#include <ViennaRNA/eval.h> Quiet level verbosity setting.

VRNA_VERBOSITY_DEFAULT
#include <ViennaRNA/eval.h> Default level verbosity setting.
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7.1.4 Energy Parameters

For secondary structure free energy evaluation we usually utilize the set of thermodynamic Nearest Neighbor
energy parameters also used in other software, such as UNAfold and RNAstructure.

Salt Corrections

All relevant functions to compute salt correction at a given salt concentration and temperature.

The corrections for loop and stack are taken from Einert and Netz [2011].

All corrections returned are in units of dcal - mol ™!,

Functions

double vrna_salt_loop(int L, double salt, double T, double backbonelen)

#include <ViennaRNA/params/salt.h> Get salt correction for a loop at a given salt concentration and
temperature.

Parameters
* L — backbone number in loop
¢ salt - salt concentration (M)
* T — absolute temperature (K)

* backbonelen — Backbone Length, phosphate-to-phosphate distance (typically 6 for
RNA, 6.76 for DNA)

Returns
Salt correction for loop in dcal/mol

int vrna_salt_loop_int (int L, double salt, double T, double backbonelen)

#include <ViennaRNA/params/salt.h> Get salt correction for a loop at a given salt concentration and
temperature.

This functions is same as vrna_salt_loop but returns rounded salt correction in integer

See also:

vrna_salt_loop

Parameters
* L — backbone number in loop
¢ salt — salt concentration (M)
* T — absolute temperature (K)

¢ backbonelen — Backbone Length, phosphate-to-phosphate distance (typically 6 for
RNA, 6.76 for DNA)

Returns
Rounded salt correction for loop in dcal/mol
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int vrna_salt_stack(double salt, double T, double hrise)

#include <ViennaRNA/params/salt.h> Get salt correction for a stack at a given salt concentration and
temperature.

Parameters
¢ salt — salt concentration (M)
¢ T — absolute temperature (K)
* hrise — Helical Rise (typically 2.8 for RNA, 3.4 for DNA)

Returns
Rounded salt correction for stack in dcal/mol

void vrna_salt_ml (double saltLoopl[], int lower, int upper, int *m, int *b)

#include <ViennaRNA/params/salt.h> Fit linear function to loop salt correction.

For a given range of loop size (backbone number), we perform a linear fitting on loop salt correction

Loop correction ~ m - L + b.

See also:

vrna_salt_loop()

Parameters
¢ saltLoop — List of loop salt correction of size from 1
¢ lower — Define the size lower bound for fitting
* upper — Define the size upper bound for fitting
e m — pointer to store the parameter m in fitting result

¢ b — pointer to store the parameter b in fitting result

int vrna_salt_duplex_init (vina_md_t *md)
#include <ViennaRNA/params/salt.h> Get salt correction for duplex initialization at a given salt con-
centration.

Parameters
¢ md — Model details data structure that specfifies salt concentration in buffer (M)

Returns
Rounded correction for duplex initialization in dcal/mol

Loading / Saving Energy Parameter Sets

Read and Write energy parameter sets from and to files or strings
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Defines

VRNA_PARAMETER_FORMAT_DEFAULT

#include <ViennaRNA/params/io.h> Default Energy Parameter File format.

See also:

vrna_params_load(), vina_params_load_from_string(), vina_params_save()

Enums

enum parset

Values:

enumerator UNKNOWN

enumerator QUIT

enumerator S

enumerator S_H

enumerator HP

enumerator HP_H

enumerator B

enumerator B_H

enumerator IL

enumerator IL_H

enumerator MMH

enumerator MMH_H

enumerator MMI

enumerator MMI_H

enumerator MMI 1IN

enumerator MMI1IN_H

7.1. Free Energy Evaluation
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enumerator MMI23

enumerator MMI23_H

enumerator MMM

enumerator MMM_H

enumerator MME

enumerator MME_H

enumerator D5

enumerator D5_H

enumerator D3

enumerator D3_H

enumerator INT11

enumerator INT11_H

enumerator INT21

enumerator INT21_H

enumerator INT22

enumerator INT22_H

enumerator ML

enumerator TL

enumerator TRI

enumerator HEX

enumerator NIN

enumerator MISC
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Functions

int vrna_params_load(const char fname[], unsigned int options)

#include <ViennaRNA/params/io.h> Load energy parameters from a file.

SWIG Wrapper Notes:

This function is available as overloaded function params_load(fname="", op-
tions=VRNA_PARAMETER_FORMAT_DEFAULT). Here, the empty filename string indicates to
load default RNA parameters, i.e. this is equivalent to calling vrna_params_load_defaults(). See,
e.g. RNA. fold_compound.params_load() in the Python API.

See also:

vrna_params_load_from_string(), vrna_params_save( ), vrna_params_load_defaults(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),

vrna_params_load_DNA_Mathews1999()

Parameters

« fname — The path to the file containing the energy parameters

 options - File format bit-mask (usually VRNA_PARAMETER FORMAT _DEFAULT)
Returns

Non-zero on success, 0 on failure

int vrna_params_save (const char fname[], unsigned int options)
#include <ViennaRNA/params/io.h> Save energy parameters to a file.

SWIG Wrapper Notes:

This function is available as overloaded function params_save(fname, op-
tions=VRNA_PARAMETER_FORMAT _DEFAULT). See, e.g. RNA.params_save() in the
Python API.

See also:

vrna_params_load()

Parameters

e fname — A filename (path) for the file where the current energy parameters will be
written to

¢ options - File format bit-mask (usually VRNA_PARAMETER_FORMAT_DEFAULT)
Returns

Non-zero on success, 0 on failure

int vrna_params_load_from_string(const char *string, const char *name, unsigned int options)

#include <ViennaRNA/params/io.h> Load energy paramters from string.

The string must follow the default energy parameter file convention! The optional name argument
allows one to specify a name for the parameter set which is stored internally.
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SWIG Wrapper Notes:

This function is available as overloaded function params_load_from_string(string,
name="",  options=VRNA_PARAMETER_FORMAT_DEFAULT). See, e.g. RNA.
params_load_from_string() in the Python API.

See also:

vrna_params_load(), vrna_params_save( ), vrna_params_load_defaults(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),

vrna_params_load_DNA_Mathews1999()

Parameters
e string — A O-terminated string containing energy parameters
* name — A name for the parameter set in string (Maybe NULL)
¢ options - File format bit-mask (usually VRNA_PARAMETER _FORMAT_DEFAULT)

Returns
Non-zero on success, 0 on failure

int vrna_params_load_defaults(void)

#include <ViennaRNA/params/io.h> Load default RNA energy parameter set.

This is a convenience function to load the Turner 2004 RNA free energy parameters. It’s the same as
calling vrna_params_load_RNA_Turner2004()

SWIG Wrapper Notes:

This function is available as overloaded function params_load(). See, e.g. RNA.
params_load() in the Python API.

See also:

vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),

vrna_params_load_DNA_Mathews1999()

Returns
Non-zero on success, 0 on failure

int vrna_params_load_RNA_Turner2004 (void)

#include <ViennaRNA/params/io.h> Load Turner 2004 RNA energy parameter set.

SWIG Wrapper Notes:

This function is available as function params_load_RNA_Turner2004(). See, e.g. RNA.
params_load_RNA_Turner2004() in the Python API.

See also:

vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_defaults(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),

vrna_params_load_DNA_Mathews1999()
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Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of RNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_RNA_Turner1999 (void)
#include <ViennaRNA/params/io.h> Load Turner 1999 RNA energy parameter set.

SWIG Wrapper Notes:

This function is available as function params_load_RNA_Turner1999(). See, e.g. RNA.
params_load_RNA_Turner1999() in the Python API.

See also:

vrna_params_load(), vrna_params_load_from_string(), vrna_params_save( ),
vrna_params_load_RNA_Turner2004(), vrna_params_load_defaults(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),

vrna_params_load_DNA_Mathews1999()

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of RNA. Only subsequently initialized vina_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_RNA_Andronescu2007 (void)
#include <ViennaRNA/params/io.h> Load Andronsecu 2007 RNA energy parameter set.

SWIG Wrapper Notes:

This function is available as function params_load_RNA_Andronescu2007(). See, e.g. RNA.
params_load_RNA_Andronescu2®07 () in the Python API.

See also:

vrna_params_load(), vrna_params_load_from_string(), vrna_params_save( ),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_defaults(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),

vrna_params_load_DNA_Mathews1999()

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of RNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_RNA_Langdon2018 (void)
#include <ViennaRNA/params/io.h> Load Langdon 2018 RNA energy parameter set.
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SWIG Wrapper Notes:

This function is available as function params_load_RNA_Langdon2018(). See, e.g. RNA.
params_load_RNA_Langdon2018() in the Python API.

See also:

vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_defaults(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),

vrna_params_load_DNA_Mathews1999()

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of RNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_RNA_misc_special_hairpins(void)

#include <ViennaRNA/params/io.h> Load Misc Special Hairpin RNA energy parameter set.

SWIG Wrapper Notes:

This function is available as function params_load_RNA_misc_special_hairpins(). See,
e.g. RNA.params_load_RNA_misc_special_hairpins() in the Python API.

See also:

vrna_params_load(), vrna_params_load_from_string(), vrna_params_save( ),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_defaults(), vrna_params_load_DNA_Mathews2004(),

vrna_params_load_DNA_Mathews1999()

Warning: This function also resets the default geometric parameters as stored in vina_md_t to
those of RNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_DNA_Mathews2004 (void)

#include <ViennaRNA/params/io.h> Load Mathews 2004 DNA energy parameter set.

SWIG Wrapper Notes:

This function is available as function params_load_DNA_Mathews2004(). See, e.g. RNA.
params_load_DNA_Mathews2004 () in the Python API.

See also:

vrna_params_load(), vrna_params_load_from_string(), vrna_params_save( ),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_defaults(),

vrna_params_load_DNA_Mathews1999()
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Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of DNA. Only subsequently initialized vrna_md_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

int vrna_params_load_DNA_Mathews1999 (void)
#include <ViennaRNA/params/io.h> Load Mathews 1999 DNA energy parameter set.

SWIG Wrapper Notes:

This function is available as function params_load_DNA_Mathews1999(). See, e.g. RNA.
params_load_DNA_Mathews1999() in the Python API.

See also:

vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(),
vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(),
vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(),

vrna_params_load_defaults()

Warning: This function also resets the default geometric parameters as stored in vrna_md_t to
those of DNA. Only subsequently initialized vina_mad_t structures will be affected by this change.

Returns
Non-zero on success, 0 on failure

const char *last_parameter_file(void)

#include <ViennaRNA/params/io.h> Get the file name of the parameter file that was most recently
loaded.

Returns
The file name of the last parameter file, or NULL if parameters are still at defaults

void read_parameter_file(const char fname[])
#include <ViennaRNA/params/io.h> Read energy parameters from a file.

Deprecated:
Use vrna_params_load() instead!
Parameters

» fname — The path to the file containing the energy parameters

void write_parameter_£file(const char fname[])

#include <ViennaRNA/params/io.h> Write energy parameters to a file.

Deprecated:

Use vrna_params_save() instead!

Parameters

e fname — A filename (path) for the file where the current energy parameters will be
written to
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enum parset gettype (const char *ident)
#include <ViennaRNA/params/io.h>

char *settype(enum parset s)
#include <ViennaRNA/params/io.h>

Converting Energy Parameter Files

Converting energy parameter files into the latest format.

To preserve some backward compatibility the RNALib also provides functions to convert energy parameter files
from the format used in version 1.4-1.8 into the new format used since version 2.0

Defines

VRNA_CONVERT_OUTPUT_ALL

#include <ViennaRNA/params/convert.h> Flag to indicate printing of a complete parameter set

VRNA_CONVERT_OUTPUT_HP

#include <ViennaRNA/params/convert.h> Flag to indicate printing of hairpin contributions

VRNA_CONVERT_OUTPUT_STACK

#include <ViennaRNA/params/convert.h> Flag to indicate printing of base pair stack contributions

VRNA_CONVERT_OUTPUT_MM_HP

#include <ViennaRNA/params/convert.h> Flag to indicate printing of hairpin mismatch contribution

VRNA_CONVERT_OUTPUT_MM_INT

#include <ViennaRNA/params/convert.h> Flag to indicate printing of interior loop mismatch contri-
bution

VRNA_CONVERT_OUTPUT_MM_INT_1N

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 1:n interior loop mismatch con-
tribution

VRNA_CONVERT_OUTPUT_MM_INT_23

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 2:3 interior loop mismatch con-
tribution

VRNA_CONVERT_OUTPUT_MM_MULTI

#include <ViennaRNA/params/convert.h> Flag to indicate printing of multi loop mismatch contribu-
tion

VRNA_CONVERT_OUTPUT_MM_EXT

#include <ViennaRNA/params/convert.h> Flag to indicate printing of exterior loop mismatch contri-
bution

VRNA_CONVERT_OUTPUT_DANGLES

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 5° dangle conctribution
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VRNA_CONVERT_OUTPUT_DANGLE3

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 3” dangle contribution

VRNA_CONVERT_OUTPUT_INT_11

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 1:1 interior loop contribution

VRNA_CONVERT_OUTPUT_INT_21

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 2:1 interior loop contribution

VRNA_CONVERT_OUTPUT_INT_22

#include <ViennaRNA/params/convert.h> Flag to indicate printing of 2:2 interior loop contribution

VRNA_CONVERT_OUTPUT_BULGE

#include <ViennaRNA/params/convert.h> Flag to indicate printing of bulge loop contribution

VRNA_CONVERT_OUTPUT_INT

#include <ViennaRNA/params/convert.h> Flag to indicate printing of interior loop contribution

VRNA_CONVERT_OUTPUT_ML

#include <ViennaRNA/params/convert.h> Flag to indicate printing of multi loop contribution

VRNA_CONVERT_OUTPUT_MISC

#include <ViennaRNA/params/convert.h> Flag to indicate printing of misc contributions (such as ter-
minalAU)

VRNA_CONVERT_OUTPUT_SPECIAL_HP

#include <ViennaRNA/params/convert.h> Flag to indicate printing of special hairpin contributions
(tri-, tetra-, hexa-loops)

VRNA_CONVERT_OUTPUT_VANILLA

#include <ViennaRNA/params/convert.h> Flag to indicate printing of given parameters only

Note: This option overrides all other output options, except VRNA_CONVERT_OUTPUT_DUMP !

VRNA_CONVERT_OUTPUT_NINIO

#include <ViennaRNA/params/convert.h> Flag to indicate printing of interior loop asymmetry contri-
bution

VRNA_CONVERT_OUTPUT_DUMP

#include <ViennaRNA/params/convert.h> Flag to indicate dumping the energy contributions from the
library instead of an input file
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Functions

void convert_parameter_file (const char *iname, const char *oname, unsigned int options)

#include <ViennaRNA/params/convert.h> Convert/dump a Vienna 1.8.4 formatted energy parameter
file

The options argument allows one to control the different output modes.

Currently available options are: VRNA_CONVERT_OUTPUT_ALL,
VRNA_CONVERT_OUTPUT_HP, VRNA_CONVERT_OUTPUT_STACKVRNA_CONVERT_OUTPUT_MM_HP,
VRNA_CONVERT_OUTPUT_MM_INT,VRNA_CONVERT_OUTPUT_MM_INT_INVRNA_CONVERT_OUTPUT_M]
VRNA_CONVERT_OUTPUT_MM_MULTI, VRNA_CONVERT_OUTPUT_MM_EXTVRNA_CONVERT_OUTPUT_DA
VRNA_CONVERT_OUTPUT_DANGLE3, VRNA_CONVERT_OUTPUT_INT_11VRNA_CONVERT_OUTPUT_INT_21
VRNA_CONVERT_OUTPUT_INT_22,VRNA_CONVERT_OUTPUT_BULGEVRNA_CONVERT_OUTPUT_INT,
VRNA_CONVERT_OUTPUT_ML,VRNA_CONVERT_OUTPUT_MISCVRNA_CONVERT_OUTPUT_SPECIAL_HP,
VRNA_CONVERT_OUTPUT_VANILLA, VRNA_CONVERT_OUTPUT_NINIOVRNA_CONVERT_OUTPUT_DUMP

The defined options are fine for bitwise compare- and assignment-operations, e. g.: pass a collection
of options as a single value like this:

[convert_parameter_file(ifile, ofile, option_1 | option_2 | option_n) }

Parameters
 iname — The input file name (If NULL input is read from stdin)
» oname — The output file name (If NULL output is written to stdout)

» options — The options (as described above)

Available Parameter Sets

While the RNAIib already contains a compiled-in set of the latest Turner 2004 Free Energy Parameters, we defined
a file format that allows to change these parameters at runtime. The ViennaRNA Package already comes with a set
of parameter files containing

e Turner 1999 RNA parameters

e Mathews 1999 DNA parameters

¢ Andronescu 2007 RNA parameters
* Mathews 2004 DNA parameters

Energy Parameter API
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Defines

VRNA_GQUAD_MAX_STACK_SIZE
#include <ViennaRNA/params/basic.h>

VRNA_GQUAD_MIN_STACK_SIZE
#include <ViennaRNA/params/basic.h>

VRNA_GQUAD_MAX_ILINKER_LENGTH
#include <ViennaRNA/params/basic.h>

VRNA_GQUAD_MIN_LINKER_LENGTH
#include <ViennaRNA/params/basic.h>

VRNA_GQUAD_MIN_BOX_SIZE
#include <ViennaRNA/params/basic.h>

VRNA_GQUAD_MAX_BOX_SIZE
#include <ViennaRNA/params/basic.h>

Typedefs

typedef struct vrna_param_s vrna_param_t

#include <ViennaRNA/params/basic.h> Typename for the free energy parameter data structure
vrna_params.

typedef struct vina_exp_param_s vrna_exp_param_t

#include <ViennaRNA/params/basic.h> Typename for the Boltzmann factor data structure
VIna_exp_params.

typedef struct vina_param_s paramT
#include <ViennaRNA/params/basic.h> Old typename of vrna_param_s.
Deprecated:
Use vrna_param_t instead!
typedef struct vina_exp_param_s pf_paramT

#include <ViennaRNA/params/basic.h> Old typename of vina_exp_param_s.

Deprecated:

Use vrna_exp_param_t instead!
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Functions

vrna_param_t *vrna_params (vrna_md_t *md)

#include <ViennaRNA/params/basic.h> Get a data structure containing prescaled free energy param-
eters.

If a NULL pointer is passed for the model details parameter, the default model parameters are stored
within the requested vrna_param_t structure.

See also:

vrna_md_t, vrna_md_set_default(), vrna_exp_params()

Parameters

e md — A pointer to the model details to store inside the structure (Maybe NULL)

Returns
A pointer to the memory location where the requested parameters are stored

vrna_param_t *vrna_params_copy (vrna_param_t *par)

#include <ViennaRNA/params/basic.h> Get a copy of the provided free energy parameters.

If NULL is passed as parameter, a default set of energy parameters is created and returned.

See also:

vrnaﬁparams(), vrna_param_t

Parameters
 par — The free energy parameters that are to be copied (Maybe NULL)
Returns

A copy or a default set of the (provided) parameters

vrna_exp_param_t *vrna_exp_params (vrna_md_t *md)

#include <ViennaRNA/params/basic.h> Get a data structure containing prescaled free energy param-
eters already transformed to Boltzmann factors.

This function returns a data structure that contains all necessary precomputed energy contributions for
each type of loop.

In contrast to vrna_params(), the free energies within this data structure are stored as their Boltzmann
factors, i.e.

exp(—FE/kT)
where FE is the free energy.

If a NULL pointer is passed for the model details parameter, the default model parameters are stored
within the requested vina_exp_param_t structure.

See also:

vrna_md_t, vina_md_set_default(), vina_params(), vrna_rescale_pf_params()

Parameters

e md — A pointer to the model details to store inside the structure (Maybe NULL)
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Returns
A pointer to the memory location where the requested parameters are stored

vrna_exp_param_t *vrna_exp_params_comparative (unsigned int n_seq, vrna_md_t *md)

#include <ViennaRNA/params/basic.h> Get a data structure containing prescaled free energy param-
eters already transformed to Boltzmann factors (alifold version)

If a NULL pointer is passed for the model details parameter, the default model parameters are stored
within the requested vrna_exp_param_t structure.

See also:

vrna_md_t, vina_md_set_default(), vrna_exp_params(), vrna_params()

Parameters
* n_seq — The number of sequences in the alignment

* md — A pointer to the model details to store inside the structure (Maybe NULL)

Returns
A pointer to the memory location where the requested parameters are stored

vrna_exp_param_t *vrna_exp_params_copy (vrna_exp_param_t *par)
#include <ViennaRNA/params/basic.h> Get a copy of the provided free energy parameters (provided
as Boltzmann factors)

If NULL is passed as parameter, a default set of energy parameters is created and returned.

See also:

vrna_exp_params(), vina_exp_param_t

Parameters

» par — The free energy parameters that are to be copied (Maybe NULL)

Returns
A copy or a default set of the (provided) parameters

void vrna_params_subst (vina_fold_compound_t *fc, vrna_param_t *par)
#include <ViennaRNA/params/basic.h> Update/Reset energy parameters data structure within a
vrna_fold_compound_t.

Passing NULL as second argument leads to a reset of the energy parameters within fc to their default
values. Otherwise, the energy parameters provided will be copied over into fc.

SWIG Wrapper Notes:

This function is attached to vrna_fc_s objects as overloaded params_subst () method.

When no parameter is passed, the resulting action is the same as passing NULL as second pa-
rameter to vrna_params_subst(), i.e. resetting the parameters to the global defaults. See, e.g.
RNA. fold_compound.params_subst () in the Python API.

See also:

vrna_params_reset(), vrna_param_t, vrna_md_t, vrna_params()

Parameters

e fc — The vrna_fold_compound_t that is about to receive updated energy parameters
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* par — The energy parameters used to substitute those within fc (Maybe NULL)

void vrna_exp_params_subst (vrna_fold_compound_t *fc, vrna_exp_param_t *params)
#include <ViennaRNA/params/basic.h> Update the energy parameters for subsequent partition func-
tion computations.

This function can be used to properly assign new energy parameters for partition function computations
to a vrna_fold_compound_t. For this purpose, the data of the provided pointer params will be copied
into fc and a recomputation of the partition function scaling factor is issued, if the pf_scale attribute
of params is less than 1.0.

Passing NULL as second argument leads to a reset of the energy parameters within fc to their default
values

SWIG Wrapper Notes:

This function is attached to vrna_fc_s objects as overloaded exp_params_subst () method.

When no parameter is passed, the resulting action is the same as passing NULL as second parameter
to vrna_exp_params_subst(), i.e. resetting the parameters to the global defaults. See, e.g. RNA.
fold_compound. exp_params_subst () in the Python API.

See also:

vrna_exp_params_reset(), vrna_exp_params_rescale(), vrna_exp_param_t, vrna_md_t,
vrna_exp_params()

Parameters
¢ fc — The fold compound data structure

 params — A pointer to the new energy parameters

void vrna_exp_params_rescale (vrna_fold_compound_t *fc, double *mfe)

#include <ViennaRNA/params/basic.h> Rescale Boltzmann factors for partition function computa-
tions.

This function may be used to (automatically) rescale the Boltzmann factors used in partition function
computations. Since partition functions over subsequences can easily become extremely large, the
RNALib internally rescales them to avoid numerical over- and/or underflow. Therefore, a proper scaling
factor s needs to be chosen that in turn is then used to normalize the corresponding partition functions

dli, j) = qli, j]/sV 0.
This function provides two ways to automatically adjust the scaling factor.
a. Automatic guess

b. Automatic adjustment according to MFE

Passing NULL as second parameter activates the automatic guess mode. Here, the scaling factor is
recomputed according to a mean free energy of 184.3*1length cal for random sequences.

On the other hand, if the MFE for a sequence is known, it can be used to recompute a more robust
scaling factor, since it represents the lowest free energy of the entire ensemble of structures, i.e. the
highest Boltzmann factor. To activate this second mode of automatic adjustment according to MFE, a
pointer to the MFE value needs to be passed as second argument. This value is then taken to compute
the scaling factor as s = exp((sfactx M FE)/kT/length), where sfact is an additional scaling weight
located in the vrna_md_t data structure of exp_params in fc.

The computed scaling factor s will be stored as pf_scale attribute of the exp_params data structure
in fc.
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SWIG Wrapper Notes:

This function is attached to vrna_fc_s objects as overloaded exp_params_rescale () method.

When no parameter is passed to this method, the resulting action is the same as passing NULL
as second parameter to vina_exp_params_rescale(), i.e. default scaling of the partition function.
Passing an energy in kcal/mol, e.g. as retrieved by a previous call to the mfe () method, instructs
all subsequent calls to scale the partition function accordingly. See, e.g. RNA. fold_compound.
exp_params_rescale() in the Python API.

See also:

vrna_exp_params_subst(), vina_md_t, vrna_exp_param_t, vrna_fold_compound_t

Note: This recomputation only takes place if the pf_scale attribute of the exp_params data structure
contained in fc has a value below 1.0.

Parameters
¢ fc — The fold compound data structure

* mfe — A pointer to the MFE (in kcal/mol) or NULL

void vrna_params_reset (vina_fold_compound_t *fc, virna_md_t *md)

#include <ViennaRNA/params/basic.h> Reset free energy parameters within a vina_fold_compound_t
according to provided, or default model details.

This function allows one to rescale free energy parameters for subsequent structure prediction or eval-
uation according to a set of model details, e.g. temperature values. To do so, the caller provides either
a pointer to a set of model details to be used for rescaling, or NULL if global default setting should be
used.

SWIG Wrapper Notes:

This function is attached to vrna_fc_s objects as overloaded params_reset () method.

When no parameter is passed to this method, the resulting action is the same as passing NULL as
second parameter to vina_params_reset(), i.e. global default model settings are used. Passing an
object of type vrna_md_s resets the fold compound according to the specifications stored within
the virna_md_s object. See, e.g. RNA. fold_compound.params_reset () in the Python API.

See also:

vrna_exp_params_reset(), vina_params_subs()

Parameters
e fc — The fold compound data structure

e md — A pointer to the new model details (or NULL for reset to defaults)

void vrna_exp_params_reset (vrna_fold_compound_t *fc, vina_md_t *md)

#include <ViennaRNA/params/basic.h> Reset Boltzmann factors for partition function computations
within a vima_fold_compound_t according to provided, or default model details.

This function allows one to rescale Boltzmann factors for subsequent partition function computations
according to a set of model details, e.g. temperature values. To do so, the caller provides either a
pointer to a set of model details to be used for rescaling, or NULL if global default setting should be
used.
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SWIG Wrapper Notes:

This function is attached to vrna_fc_s objects as overloaded exp_params_reset () method.

When no parameter is passed to this method, the resulting action is the same as passing NULL
as second parameter to vina_exp_params_reset(), i.e. global default model settings are used.
Passing an object of type vrna_md_s resets the fold compound according to the specifications
stored within the vrna_md_s object. See, e.g. RNA. fold_compound. exp_params_reset() in
the Python API.

See also:

vrna_params_reset(), vina_exp_params_subst(), vrna_exp_params_rescale()

Parameters
¢ fc — The fold compound data structure

¢ md — A pointer to the new model details (or NULL for reset to defaults)

void vrna_params_prepare (vina_fold_compound_t *fc, unsigned int options)
#include <ViennaRNA/params/basic.h>

vrna_param_t *get_parameter_copy (vina_param_t *par)
#include <ViennaRNA/params/basic.h>

vrna_exp_param_t *get_scaled_pf_parameters(void)

#include <ViennaRNA/params/basic.h> get a data structure of type vrna_exp_param_t which contains
the Boltzmann weights of several energy parameters scaled according to the current temperature

Deprecated:

Use vrna_exp_params() instead!

Returns
The data structure containing Boltzmann weights for use in partition function calculations

vrna_exp_param_t *get_boltzmann_factors (double temperature, double betaScale, vina_md_t md,
double pf_scale)

#include <ViennaRNA/params/basic.h> Get precomputed Boltzmann factors of the loop type depen-
dent energy contributions with independent thermodynamic temperature.

This function returns a data structure that contains all necessary precalculated Boltzmann factors for
each loop type contribution.

In contrast to get_scaled_pf_parameters(), this function enables setting of independent temperatures
for both, the individual energy contributions as well as the thermodynamic temperature used in
exp(—AG/kT)

Deprecated:

Use vrna_exp_params() instead!

See also:

get_scaled_pf_parameters(), get_boltzmann_factor_copy()

Parameters
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* temperature — The temperature in degrees Celcius used for (re-)scaling the energy
contributions

* betaScale — A scaling value that is used as a multiplication factor for the absolute
temperature of the system

¢ md — The model details to be used
» pf_scale — The scaling factor for the Boltzmann factors
Returns

A set of precomputed Boltzmann factors

vrna_exp_param_t *get_boltzmann_factor_copy (vina_exp_param_t *parameters)

#include <ViennaRNA/params/basic.h> Get a copy of already precomputed Boltzmann factors.

Deprecated:

Use vrna_exp_params_copy() instead!

See also:

get_boltzmann_factors(), get_scaled_pf_parameters()

Parameters
» parameters — The input data structure that shall be copied

Returns
A copy of the provided Boltzmann factor data set

vrna_exp_param_t *get_scaled_alipf_parameters(unsigned int n_seq)

#include <ViennaRNA/params/basic.h> Get precomputed Boltzmann factors of the loop type depen-
dent energy contributions (alifold variant)

Deprecated:
Use vrna_exp_params_comparative() instead!
vrna_exp_param_t *get_boltzmann_factors_ali (unsigned int n_seq, double temperature, double
betaScale, vina_md_t md, double pf_scale)

#include <ViennaRNA/params/basic.h> Get precomputed Boltzmann factors of the loop type depen-
dent energy contributions (alifold variant) with independent thermodynamic temperature.

Deprecated:

Use vrna_exp_params_comparative() instead!

vrna_param_t *scale_parameters (void)
#include <ViennaRNA/params/basic.h> Get precomputed energy contributions for all the known loop
types.

Deprecated:

Use vrna_params() instead!

Note: OpenMP: This function relies on several global model settings variables and thus is not to be
considered threadsafe. See get_scaled_parameters() for a completely threadsafe implementation.
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Returns
A set of precomputed energy contributions

vrna_param_t *get_scaled_parameters (double temperature, vrna_md_t md)

#include <ViennaRNA/params/basic.h> Get precomputed energy contributions for all the known loop
types.

Call this function to retrieve precomputed energy contributions, i.e. scaled according to the temperature
passed. Furthermore, this function assumes a data structure that contains the model details as well, such
that subsequent folding recursions are able to retrieve the correct model settings

Deprecated:

Use vrna_params() instead!

See also:

vrna_md_t, set_model_details()

Parameters
* temperature — The temperature in degrees Celcius
* md — The model details

Returns

precomputed energy contributions and model settings

vrna_param_t *copy_parameters (void)
#include <ViennaRNA/params/basic.h>

vrna_param_t *set_parameters (vrna_param_t *dest)
#include <ViennaRNA/params/basic.h>

vrna_exp_param_t *scale_pf_parameters (void)
#include <ViennaRNA/params/basic.h>

vrna_exp_param_t *copy_pf_param(void)
#include <ViennaRNA/params/basic.h>

vrna_exp_param_t *set_pf_param(vrna_param_t *dest)
#include <ViennaRNA/params/basic.h>

struct vrna_param_s

#include <ViennaRNA/params/basic.h> The datastructure that contains temperature scaled energy pa-
rameters.

Public Members

int id

int stack[NBPAIRS + 1]J[NBPAIRS + 1]

int hairpin[31]

int bulge[MAXLOOP + 1]
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int internal_loop[MAXLOOP + 1]

int mismatchExt[NBPAIRS + 1][5][5]

int mismatchI[NBPAIRS + 1][5][5]

int mismatchlnI[NBPAIRS + 1][5][5]

int mismatch23I[NBPAIRS + 1][5][5]

int mismatchH[NBPAIRS + 1][5][5]

int mismatchM[NBPAIRS + 1][5][5]

int dangle5[NBPAIRS + 1][5]

int dangle3[NBPAIRS + 1][5]

int int11[NBPAIRS + 1][NBPAIRS + 1][5][5]

int int21[NBPAIRS + 1][NBPAIRS + 1][5][5][5]

int int22[NBPAIRS + 1][NBPAIRS + 1][5][5][5][5]

int ninio[5]

double 1xc

int MLbase

int MLintern[NBPAIRS + 1]

int MLclosing

int TerminalAU

int DuplexInit

int Tetraloop_E[200]

char Tetraloops[1401]

int Triloop_E[40]

char Triloops[241]
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int Hexaloop_E[40]

char Hexaloops[1801]

int TripleC

int MultipleCA

int MultipleCB

int gquad[VRNA_GQUAD_MAX_STACK_SIZE + 11[3 * VRNA_GQUAD_MAX_LINKER_LENGTH
+ 1]

int gquadLayerMismatch

int gquadLayerMismatchMax

double temperature

Temperature used for loop contribution scaling.

virna_md_t model_details

Model details to be used in the recursions.

char param_f£file[256]

The filename the parameters were derived from, or empty string if they represent the default.

int SaltStack

int SaltLoop[MAXLOOP + 2]

double SaltLoopDbl[MAXLOOP + 2]

int SaltMLbase

int SaltMLintern

int SaltMLclosing

int SaltDPXInit

struct vrna_exp_param_s

#include <ViennaRNA/params/basic.h> The data structure that contains temperature scaled Boltz-
mann weights of the energy parameters.
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Public Members

int id

An identifier for the data structure.

Deprecated:

This attribute will be removed in version 3

double expstack[NBPAIRS + 1][NBPAIRS + 1]

double exphairpin[31]

double expbulge[MAXLOOP + 1]

double expinternal[MAXLOOP + 1]

double expmismatchExt[NBPAIRS + 1][5][5]

double expmismatchI[NBPAIRS + 1][5][5]

double expmismatch23I[NBPAIRS + 1][5][5]

double expmismatchInI[NBPAIRS + 1][5][5]

double expmismatchH[NBPAIRS + 1][5][5]

double expmismatchM[NBPAIRS + 1][5][5]

double expdangle5[NBPAIRS + 1][5]

double expdangle3[NBPAIRS + 1][5]

double expint11[NBPAIRS + 1][NBPAIRS + 1][5][5]

double expint21[NBPAIRS + 1][NBPAIRS + 1][5][5][5]

double expint22[NBPAIRS + 1][NBPAIRS + 1][51[5][5][5]

double expninio[5][MAXLOOP + 1]

double 1xc

double expMLbase

double expMLintern[NBPAIRS + 1]
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double expMLclosing
double expTermAU
double expDuplexInit
double exptetral40]
double exptri[40]
double exphex[40]

char Tetraloops[1401]
double expTriloop[40]
char Triloops([241]
char Hexaloops[1801]
double expTripleC
double expMultipleCA

double expMultipleCB

double expgquad[VRNA_GQUAD_MAX STACK_SIZE + 1][3 *
VRNA_GQUAD_MAX_LINKER_LENGTH + 1]

double expgquadLayerMismatch
int gquadLayerMismatchMax
double kT

double pf_scale

Scaling factor to avoid over-/underflows.

double temperature

Temperature used for loop contribution scaling.

double alpha

Scaling factor for the thermodynamic temperature.

This allows for temperature scaling in Boltzmann factors independently from the energy contribu-
tions. The resulting Boltzmann factors are then computed by e~/ (@ KT)
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vrna_md_t model_details

Model details to be used in the recursions.

char param_£ile[256]

The filename the parameters were derived from, or empty string if they represent the default.

double expSaltStack

double expSaltLoop[MAXLOOP + 2]
double SaltLoopDbl[MAXLOOP + 2]
int SaltMLbase

int SaltMLintern

int SaltMLclosing

int SaltDPXInit

7.1.5 Deprecated Interface for Free Energy Evaluation

Using the functions below is discouraged as they have been marked deprecated and will be removed from the library
in the (near) future!

Defines

ON_SAME_STRAND(, J, C)
#include <ViennaRNA/loops/internal.h>

Functions

float energy_of_structure (const char *string, const char *structure, int verbosity_level)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA using global model
detail settings.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:

Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

See also:

vrna_eval_structure()
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Note: OpenMP: This function relies on several global model settings variables and thus is not to be
considered threadsafe. See energy_of _struct_par() for a completely threadsafe implementation.

Parameters
¢ string — RNA sequence
* structure - secondary structure in dot-bracket notation
* verbosity_level — a flag to turn verbose output on/off
Returns

the free energy of the input structure given the input sequence in kcal/mol

float energy_of_struct_par (const char *string, const char *structure, vrna_param_t *parameters, int
verbosity_level)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:

Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

See also:

vrna_eval_structure()

Parameters
* string — RNA sequence in uppercase letters
* structure — Secondary structure in dot-bracket notation

* parameters — A data structure containing the prescaled energy contributions and the
model details.

» verbosity_level — A flag to turn verbose output on/off
Returns

The free energy of the input structure given the input sequence in kcal/mol

float energy_of_circ_structure(const char *string, const char *structure, int verbosity_level)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded circular RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:

Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

See also:

vrna_eval_structure()

Note: OpenMP: This function relies on several global model settings variables and thus is not to be
considered threadsafe. See energy_of _circ_struct_par() for a completely threadsafe implementation.
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Parameters
¢ string — RNA sequence
* structure — Secondary structure in dot-bracket notation
» verbosity_level — A flag to turn verbose output on/off
Returns

The free energy of the input structure given the input sequence in kcal/mol

float energy_of_circ_struct_par(const char *string, const char *structure, vina_param_t
*parameters, int verbosity_level)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded circular RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:

Use vrna_eval_structure() or vrna_eval_structure_verbose() instead!

See also:

vrna_eval_structure()

Parameters
e string — RNA sequence
* structure — Secondary structure in dot-bracket notation

» parameters — A data structure containing the prescaled energy contributions and the
model details.

» verbosity_level — A flag to turn verbose output on/off
Returns

The free energy of the input structure given the input sequence in kcal/mol

float energy_of_gquad_structure (const char *string, const char *structure, int verbosity_level)
#include <ViennaRNA/eval.h>

float energy_of_gquad_struct_par (const char *string, const char *structure, vrna_param_t
*parameters, int verbosity_level)

#include <ViennaRNA/eval.h>

int energy_of_structure_pt (const char *string, short *ptable, short *s, short *s1, int verbosity_level)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:

Use vrna_eval_structure_pt() or vrna_eval_structure_pt_verbose() instead!

See also:

vrna_eval_structure_pt()

Note: OpenMP: This function relies on several global model settings variables and thus is not to be
considered threadsafe. See energy_of _struct_pt_par() for a completely threadsafe implementation.
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Parameters

¢ string — RNA sequence

¢ ptable — the pair table of the secondary structure

* s —encoded RNA sequence

¢ sl —encoded RNA sequence

¢ verbosity_level — a flag to turn verbose output on/off
Returns

the free energy of the input structure given the input sequence in 10kcal/mol

int energy_of_struct_pt_par (const char *string, short *ptable, short *s, short *s1, vrna_param_t
*parameters, int verbosity_level)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated:

Use vrna_eval_structure_pt() or vrna_eval_structure_pt_verbose() instead!

See also:

vrna_eval_structure_pt()

Parameters
* string — RNA sequence in uppercase letters
¢ ptable — The pair table of the secondary structure
* s — Encoded RNA sequence
* s1 - Encoded RNA sequence

» parameters — A data structure containing the prescaled energy contributions and the
model details.

» verbosity_level — A flag to turn verbose output on/oft
Returns

The free energy of the input structure given the input sequence in 10kcal/mol

float energy_of_move (const char *string, const char *structure, int m1, int m2)

#include <ViennaRNA/eval.h> Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

Deprecated:

Use vrna_eval_move() instead!

See also:

vrna_eval_move()

Parameters

¢ string — RNA sequence
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* structure — secondary structure in dot-bracket notation
e ml — first coordinate of base pair
* m2 — second coordinate of base pair

Returns

energy change of the move in kcal/mol

int energy_of_move_pt (short *pt, short *s, short *s1, int m1, int m2)
#include <ViennaRNA/eval.h> Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m?2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion
(opening).

Deprecated:

Use vrna_eval_move_pt() instead!

See also:

vrna_eval_move_pt()

Parameters
* pt — the pair table of the secondary structure
* s —encoded RNA sequence
* sl -encoded RNA sequence
e ml — first coordinate of base pair
* m2 — second coordinate of base pair
Returns

energy change of the move in 10cal/mol

int loop_energy (short *ptable, short *s, short *s1, int i)
#include <ViennaRNA/eval.h> Calculate energy of a loop.

Deprecated:

Use vrna_eval_loop_pt() instead!

See also:

vrna_eval_loop_pt()

Parameters
* ptable - the pair table of the secondary structure
* s —encoded RNA sequence
* sl —encoded RNA sequence
¢ i — position of covering base pair

Returns
free energy of the loop in 10cal/mol
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float energy_of_struct (const char *string, const char *structure)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA

Deprecated:

This function is deprecated and should not be used in future programs! Use energy_of structure()
instead!

See also:

energy_of _structure, energy_of_circ_struct(), energy_of_struct_pt()

Note: This function is not entirely threadsafe! Depending on the state of the global variable eos_debug
it prints energy information to stdout or not...

Parameters

e string — RNA sequence

e structure — secondary structure in dot-bracket notation
Returns

the free energy of the input structure given the input sequence in kcal/mol

int energy_of_struct_pt(const char *string, short *ptable, short *s, short *s1)
#include <ViennaRNA/eval.h> Calculate the free energy of an already folded RNA

Deprecated:
This function is deprecated and should not be used in future programs! Use en-
ergy_of _structure_pt() instead!

See also:

make_pair_table(), energy_of _structure()

Note: This function is not entirely threadsafe! Depending on the state of the global variable eos_debug
it prints energy information to stdout or not...

Parameters
¢ string — RNA sequence
¢ ptable — the pair table of the secondary structure
¢ s —encoded RNA sequence
* sl -encoded RNA sequence
Returns

the free energy of the input structure given the input sequence in 10kcal/mol

float energy_of_circ_struct (const char *string, const char *structure)

#include <ViennaRNA/eval.h> Calculate the free energy of an already folded circular RNA
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Deprecated:
This function is deprecated and should not be used in future programs Use en-
ergy_of _circ_structure() instead!

See also:

energy_of _circ_structure(), energy_of _struct(), energy_of_struct_pt()

Note: This function is not entirely threadsafe! Depending on the state of the global variable eos_debug
it prints energy information to stdout or not...

Parameters
¢ string — RNA sequence
* structure - secondary structure in dot-bracket notation

Returns
the free energy of the input structure given the input sequence in kcal/mol

int E_Stem(int type, int sil, int sjl, int extLoop, vrna_param_t *P)

#include <ViennaRNA/loops/external.h> Compute the energy contribution of a stem branching off a
loop-region.

This function computes the energy contribution of a stem that branches off a loop region. This can be
the case in multiloops, when a stem branching off increases the degree of the loop but also immediately
interior base pairs of an exterior loop contribute free energy. To switch the behavior of the function
according to the evaluation of a multiloop- or exterior-loop-stem, you pass the flag ‘extLoop’. The
returned energy contribution consists of a Terminal AU penalty if the pair type is greater than 2, dangling
end contributions of mismatching nucleotides adjacent to the stem if only one of the sil, sj1 parameters
is greater than 0 and mismatch energies if both mismatching nucleotides are positive values. Thus, to
avoid incorporating dangling end or mismatch energies just pass a negative number, e.g. -1 to the
mismatch argument.

This is an illustration of how the energy contribution is assembled:

Here, (X,Y) is the base pair that closes the stem that branches off a loop region. The nucleotides sil and
sjl are the 5°- and 3’- mismatches, respectively. If the base pair type of (X,Y) is greater than 2 (i.e. an
A-U or G-U pair, the Terminal AU penalty will be included in the energy contribution returned. If sil
and sjl are both nonnegative numbers, mismatch energies will also be included. If one of sil or sjl is a
negative value, only 5’ or 3’ dangling end contributions are taken into account. To prohibit any of these
mismatch contributions to be incorporated, just pass a negative number to both, sil and sjl. In case
the argument extLoop is O, the returned energy contribution also includes the internal-loop-penalty of
a multiloop stem with closing pair type.

Deprecated:

Please use one of the functions vrna_E _ext _stem() and E_MLstem() instead! Use the former for
cases where extLoop != 0 and the latter otherwise.

See also:

E_MLstem(), _ExtLoop()

Note: This function is threadsafe

Parameters
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* type — The pair type of the first base pair un the stem
¢ sil — The 5’-mismatching nucleotide
¢ sj1 - The 3’-mismatching nucleotide

* extLoop — A flag that indicates whether the contribution reflects the one of an exterior
loop or not

e P — The data structure containing scaled energy parameters

Returns
The Free energy of the branch off the loop in dcal/mol

int E_ExtLoop (int type, int sil, int sjl, vrna_param_t *P)

#include <ViennaRNA/loops/external.h>

FLT_OR_DBL exp_E_ExtLoop (int type, int sil, int sjl, vrna_exp_param_t *P)

#include <ViennaRNA/loops/external. h> This is the partition function variant of E_ExtLoop()
Deprecated:

Use vina_exp_E_ext_stem() instead!

See also:

E_ExtLoop()

Returns
The Boltzmann weighted energy contribution of the introduced exterior-loop stem

FLT_OR_DBL exp_E_Stem(int type, int sil, int sj1, int extLoop, vrna_exp_param_t *P)

#include <ViennaRNA/loops/external.h> Compute the Boltzmann weighted energy contribution of a
stem branching off a loop-region

This is the partition function variant of £_Stem()

See also:

E_Stem()

Note: This function is threadsafe

Returns
The Boltzmann weighted energy contribution of the branch off the loop

static int E_IntLoop(int nl, int n2, int type, int type_2, int sil, int sjl, int sp1, int sql, vrna_param_t *P)

#include <ViennaRNA/loops/internal.h> Compute the Energy of an interior-loop

This function computes the free energy AG of an interior-loop with the following structure: This
general structure depicts an interior-loop that is closed by the base pair (X,Y). The enclosed base pair
is (V,U) which leaves the unpaired bases a_1-a_n and b_1-b_n that constitute the loop. In this example,
the length of the interior-loop is (n + m) where n or m may be O resulting in a bulge-loop or base pair
stack. The mismatching nucleotides for the closing pair (X,Y) are:

5’-mismatch: a_1
3’-mismatch: b_m
and for the enclosed base pair (V,U):

5’-mismatch: b_1
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3’-mismatch: a_n

See also:

S(:ale_pammelers(), vrna_param_t

Note:

Base pairs are always denoted in 5°->3’ direction. Thus the enclosed base pair must be ‘turned arround’
when evaluating the free energy of the interior-loop

This function is threadsafe

Parameters
* nl - The size of the ‘left’-loop (number of unpaired nucleotides)
* n2 — The size of the ‘right’-loop (number of unpaired nucleotides)
* type — The pair type of the base pair closing the interior loop
* type_2 — The pair type of the enclosed base pair
¢ sil - The 5’-mismatching nucleotide of the closing pair
¢ sj1 - The 3’-mismatching nucleotide of the closing pair
* spl — The 3’-mismatching nucleotide of the enclosed pair
* sql — The 5’-mismatching nucleotide of the enclosed pair
e P — The datastructure containing scaled energy parameters

Returns
The Free energy of the Interior-loop in dcal/mol

static FLT_OR_DBL exp_E_IntLoop(int ul, int u2, int type, int type2, short sil, short sjl, short sp1,
short sql, vrna_exp_param_t *P)
#include <ViennaRNA/loops/internal.h> Compute Boltzmann weight of interior loop

multiply by scale[ul+u2+2] for scaling

See also:

get_scaled _pf parameters(), vrna_exp_param_t, E_IntLoop()

Note: This function is threadsafe

Parameters
* ul — The size of the ‘left’-loop (number of unpaired nucleotides)
* u2 — The size of the ‘right’-loop (number of unpaired nucleotides)
* type — The pair type of the base pair closing the interior loop
* type2 — The pair type of the enclosed base pair
¢ sil - The 5’-mismatching nucleotide of the closing pair
¢ sj1 - The 3’-mismatching nucleotide of the closing pair

* spl — The 3’-mismatching nucleotide of the enclosed pair
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* sql — The 5’-mismatching nucleotide of the enclosed pair
e P — The datastructure containing scaled Boltzmann weights of the energy parameters

Returns
The Boltzmann weight of the Interior-loop

static int E_IntLoop_Co(int type, int type_2, int i, int j, int p, int g, int cutpoint, short sil, short sj1, short
spl, short sql, int dangles, vrna_param_t *P)

#include <ViennaRNA/loops/internal.h>

static int ubf_eval_int_loop(int i, int j, int p, int q, int i1, int j1, int p1, int q1, short si, short sj, short sp,
short sq, unsigned char type, unsigned char type_2, int *rtype, int ij, int
cp, vrna_param_t *P, vina_sc_t *sc)

#include <ViennaRNA/loops/internal.h>

static int ubf_eval_int_loop2 (int i, int j, int p, int g, int il, int j1, int p1, int q1, short si, short sj, short
sp, short sq, unsigned char type, unsigned char type_2, int *rtype, int ij,
unsigned int *sn, unsigned int *ss, vina_param_t *P, vrna_sc_t *sc)

#include <ViennaRNA/loops/internal.h>

static int ubf_eval_ext_int_loop(int i, int j, int p, int q, int il, int j1, int p1, int q1, short si, short sj,
short sp, short sq, unsigned char type, unsigned char type_2, int
length, vrna_param_t *P, vina_sc_t *sc)

#include <ViennaRNA/loops/internal.h>

static int E_MLstem(int type, int sil, int sj1, vrna_param_t *P)
#include <ViennaRNA/loops/multibranch.h>

static FLT_OR_DBL exp_E_MLstem(int type, int sil, int sj1, vina_exp_param_t *P)
#include <ViennaRNA/loops/multibranch.h>

Variables

int cut_point

first pos of second seq for cofolding

int eos_debug

verbose info from energy_of_struct

7.1.6 Loop Decomposition
Each base pair in a secondary structure closes a loop, thereby directly enclosing unpaired nucleotides, and/or further
base pairs. Our implementation distinguishes four basic types of loops:

* hairpin loops

* interior loops

» multibranch loops

* exterior loop

While the exterior loop is a special case without a closing pair, the other loops are determined by the number of
base pairs involved in the loop formation, i.e. hairpin loops are 1-loops, since only a single base pair delimits the
loop. interior loops are 2-loops due to their enclosing, and enclosed base pair. All loops where more than two base
pairs are involved, are termed multibranch loops.
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7.1.7 Fine-tuning of the Evaluation Model

See also...

Fine-tuning of the Implemented Models
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7.2 The RNA Folding Grammar

The RNA folding grammar as implemented in RNAlib

7.2.1 Fine-tuning of the Implemented Models

Functions and data structures to fine-tune the implemented secondary structure evaluation model.

Defines

NBASES
#include <ViennaRNA/model.h>

VRNA_MODEL_DEFAULT_TEMPERATURE
#include <ViennaRNA/model.h>

See also:

vrna_md_t.temperature, vrna_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_PF_SCALE

#include <ViennaRNA/model.h> Default scaling factor for partition function computations.

See also:

vrna_exp_param_t.pf_scale, vina_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_BETA_SCALE

#include <ViennaRNA/model.h> Default scaling factor for absolute thermodynamic temperature in
Boltzmann factors.

See also:

vrna_exp_param_t.alpha, vina_md_t.betaScale, vrna_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_DANGLES
#include <ViennaRNA/model.h> Default dangling end model.

See also:

vrna_md_t.dangles, vina_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_SPECIAL_HP

#include <ViennaRNA/model h> Default model behavior for lookup of special tri-, tetra-, and hexa-
loops.
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See also:

vrna_md_t.special_hp, virna_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_NO_LP

#include <ViennaRNA/model.h> Default model behavior for so-called ‘lonely pairs’.

See also:

vrna_md_t.noLP, vrna_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_NO_GU
#include <ViennaRNA/model.h> Default model behavior for G-U base pairs.

See also:

virna_md_t.noGU , vrna_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_NO_GU_CLOSURE
#include <ViennaRNA/model.h> Default model behavior for G-U base pairs closing a loop.

See also:

vrna_md_t.noGUclosure, vina_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_CIRC
#include <ViennaRNA/model.h> Default model behavior to treat a molecule as a circular RNA (DNA)

See also:

vrna_md_t.circ, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_GQUAD
#include <ViennaRNA/model.h> Default model behavior regarding the treatment of G-Quadruplexes.

See also:

vrna_md_t.gquad, vina_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_UNIQ_ML

#include <ViennaRNA/model.h> Default behavior of the model regarding unique multi-branch loop
decomposition.

See also:

vrna_md_t.uniq_ML, vrna_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_ENERGY_SET

#include <ViennaRNA/model.h> Default model behavior on which energy set to use.
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See also:

vrna_md_t.energy_set, vina_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_BACKTRACK

#include <ViennaRNA/model.h> Default model behavior with regards to backtracking of structures.

See also:

vrna_md_t.backtrack, vrna_md_defaults_reset(), vima_md_set_default()

VRNA_MODEL_DEFAULT_BACKTRACK_TYPE
#include <ViennaRNA/model.h> Default model behavior on what type of backtracking to perform.

See also:

vrna_md_t.backtrack_type, vrna_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_COMPUTE_BPP

#include <ViennaRNA/model.h> Default model behavior with regards to computing base pair proba-
bilities.

See also:

vrna_md_t.compute_bpp, vina_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_MAX_BP_SPAN

#include <ViennaRNA/model.h> Default model behavior for the allowed maximum base pair span.

See also:

vrna_md_t.max_bp_span, vrna_md_defaults_reset(), vrna_md_set_default()

VRNA_MODEL_DEFAULT_WINDOW_SIZE
#include <ViennaRNA/model.h> Default model behavior for the sliding window approach.

See also:

vrna_md_t.window_size, vina_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_LOG_ML

#include <ViennaRNA/model h> Default model behavior on how to evaluate the energy contribution
of multi-branch loops.

See also:

vrna_md_t.logML, vina_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_ALI_OLD_EN

#include <ViennaRNA/model.h> Default model behavior for consensus structure energy evaluation.
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See also:

vrna_md_t.oldAliEn, vrna_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_ALI_RIBO

#include <ViennaRNA/model.h> Default model behavior for consensus structure co-variance contri-
bution assessment.

See also:

vrna_md_t.ribo, vrna_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_ALI_CV_FACT

#include <ViennaRNA/model.h> Default model behavior for weighting the co-variance score in con-
sensus structure prediction.

See also:

vrna_md_t.cv_fact, vina_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_ALI_NC_FACT

#include <ViennaRNA/model.h> Default model behavior for weighting the nucleotide conservation?
in consensus structure prediction.

See also:

vrna_md_t.nc_fact, vima_md_defaults_reset(), vina_md_set_default()

VRNA_MODEL_DEFAULT_PF_SMOOTH
#include <ViennaRNA/model.h>

VRNA_MODEL_DEFAULT_SALT
#include <ViennaRNA/model.h> Default model salt concentration (M)

VRNA_MODEL_DEFAULT_SALT_MLLOWER

#include <ViennaRNA/model.h> Default model lower bound of multiloop size for salt correction fiting.

VRNA_MODEL_DEFAULT_SALT_MLUPPER

#include <ViennaRNA/model.h> Default model upper bound of multiloop size for salt correction fiting.

VRNA_MODEL_DEFAULT_SALT_DPXINIT

#include <ViennaRNA/model.h> Default model value to turn off user-provided salt correction for du-
plex initializtion.

VRNA_MODEL_SALT_DPXINIT_FACT_RNA
#include <ViennaRNA/model. h>

VRNA_MODEL_SALT_DPXINIT_FACT_DNA
#include <ViennaRNA/model. h>
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VRNA_MODEL_DEFAULT_SALT_DPXINIT_FACT
#include <ViennaRNA/model.h>

VRNA_MODEL_HELICAL_RISE_RNA
#include <ViennaRNA/model.h>

VRNA_MODEL_HELICAL_RISE_DNA
#include <ViennaRNA/model.h>

VRNA_MODEL_DEFAULT_HELICAL_RISE
#include <ViennaRNA/model.h> Default helical rise.

VRNA_MODEL_BACKBONE_LENGTH_RNA
#include <ViennaRNA/model. h>

VRNA_MODEL_BACKBONE_LENGTH_DNA
#include <ViennaRNA/model. h>

VRNA_MODEL_DEFAULT_BACKBONE_LENGTH
#include <ViennaRNA/model.h> Default backbone length.

MAXALPHA
#include <ViennaRNA/model.h> Maximal length of alphabet.

model_detailsT
#include <ViennaRNA/model. h>

Typedefs

typedef struct vrna_md_s vrna_md_t

#include <ViennaRNA/model.h> Typename for the model details data structure vina_md_s.

Functions

void vrna_md_set_default (vina_md_t *md)
#include <ViennaRNA/model.h> Apply default model details to a provided vrna_md_t data structure.

Use this function to initialize a vina_md_t data structure with its default values
Parameters
* md — A pointer to the data structure that is about to be initialized

void vrna_md_update (vrna_md_t *md)
#include <ViennaRNA/model.h> Update the model details data structure.

This function should be called after changing the vina_md_t.energy_set attribute since it re-initializes
base pairing related arrays within the vrna_md_t data structure. In particular, vrna_md_t.pair,
vrna_md_t.alias, and vrna_md_t.rtype are set to the values that correspond to the specified
vrna_md_t.energy_set option
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See also:

vrna_md_t, vrna_md_t.energy_set, vrna_md_t.pair, vrna_md_t.rtype, vrna_md_t.alias,
vrna_md_set_default()

vrna_md_t *vrna_md_copy (vrna_md_t *md_to, const vrna_md_t *md_from)
#include <ViennaRNA/model.h> Copy/Clone a vrna_md_t model.

Use this function to clone a given model either inplace (target container md_to given) or create a copy
by cloning the source model and returning it (md_to == NULL).

Parameters
¢ md_to — The model to be overwritten (if non-NULL and md_to !=md_from)
e md_from — The model to copy (if non-NULL)

Returns
A pointer to the copy model (or NULL if md_from == NULL)
char *vrna_md_option_string(vina_md_t *md)

#include <ViennaRNA/model.h> Get a corresponding commandline parameter string of the options in
avrna_md_t.

Note: This function is not threadsafe!

void vrna_md_set_nonstandards (vrna_md_t *md, const char *ns_bases)
#include <ViennaRNA/model.h>

void vrna_md_defaults_reset (vrna_md_t *md_p)

#include <ViennaRNA/model.h> Reset the global default model details to a specific set of parameters,
or their initial values.

This function resets the global default model details to their initial values, i.e. as specified by the
ViennaRNA Package release, upon passing NULL as argument. Alternatively it resets them according
to a set of provided parameters.

See also:

vrna_md_set_default(), vina_md_t

Note: The global default parameters affect all function calls of RNAlib where model details are not
explicitly provided. Hence, any change of them is not considered threadsafe

Warning: This function first resets the global default settings to factory defaults, and only then
applies user provided settings (if any). User settings that do not meet specifications are skipped.

Parameters

e md_p — A set of model details to use as global default (if NULL is passed, factory
defaults are restored)

void vrna_md_defaults_temperature (double T)

#include <ViennaRNA/model.h> Set default temperature for energy evaluation of loops.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_TEMPERATURE
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Parameters
* T — Temperature in centigrade

double vrna_md_defaults_temperature_get (void)

#include <ViennaRNA/model.h> Get default temperature for energy evaluation of loops.

See also:

vrna_md_defaults_temperature(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT _TEMPERATURE

Returns
The global default settings for temperature in centigrade

void vrna_md_defaults_betaScale(double b)

#include <ViennaRNA/model.h> Set default scaling factor of thermodynamic temperature in Boltz-
mann factors.

Bolzmann factors are then computed as exp(—F /(b - kT)).

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_BETA_SCALE

Parameters

¢ b — The scaling factor, default is 1.0

double vrna_md_defaults_betaScale_get (void)

#include <ViennaRNA/model h> Get default scaling factor of thermodynamic temperature in Boltz-
mann factors.

See also:

vrna_md_defaults_betaScale(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL DEFAULT BETA_SCALE

Returns
The global default thermodynamic temperature scaling factor

void vrna_md_defaults_pf_smooth(int s)
#include <ViennaRNA/model h>

int vrna_md_defaults_pf_smooth_get (void)
#include <ViennaRNA/model. h>

void vrna_md_defaults_dangles(int d)

#include <ViennaRNA/model.h> Set default dangle model for structure prediction.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_DANGLES

Parameters

¢ d - The dangle model

294 Chapter 7. Concepts and Algorithms



ViennaRNA, Release 2.6.4

int vrna_md_defaults_dangles_get (void)
#include <ViennaRNA/model.h> Get default dangle model for structure prediction.

See also:
vrna_md_defaults_dangles(),  vrna_md_defaults_reset(),  vrna_md_set_default(),  vrna_md_t,

VRNA_MODEL _DEFAULT_DANGLES

Returns
The global default settings for the dangle model

void vrna_md_defaults_special_hp(int flag)

#include <ViennaRNA/model.h> Set default behavior for lookup of tabulated free energies for special
hairpin loops, such as Tri-, Tetra-, or Hexa-loops.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), virna_md_t, VRNA_MODEL_DEFAULT_SPECIAL_HP

Parameters

¢ flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_special_hp_get (void)

#include <ViennaRNA/model.h> Get default behavior for lookup of tabulated free energies for special
hairpin loops, such as Tri-, Tetra-, or Hexa-loops.

See also:
vrna_md_defaults_special_hp(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL DEFAULT SPECIAL_HP

Returns
The global default settings for the treatment of special hairpin loops

void vrna_md_defaults_noLP (int flag)
#include <ViennaRNA/model h> Set default behavior for prediction of canonical secondary structures.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT _NO_LP

Parameters

« flag - On/Off switch (0 = OFF, else = ON)

int vena_md_defaults_noLP_get (void)

#include <ViennaRNA/model h> Get default behavior for prediction of canonical secondary structures.

See also:

vrna_md_defaults_noLP(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT _NO_LP

7.2.

The RNA Folding Grammar 295



ViennaRNA, Release 2.6.4

Returns
The global default settings for predicting canonical secondary structures

void vrna_md_defaults_noGU(int flag)
#include <ViennaRNA/model.h> Set default behavior for treatment of G-U wobble pairs.

See also:

vina_md_defaults_reset(), virna_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_NO_GU

Parameters
¢ flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_noGU_get (void)
#include <ViennaRNA/model.h> Get default behavior for treatment of G-U wobble pairs.

See also:
vrna_md_defaults_noGU(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,

VRNA_MODEL_DEFAULT NO_GU

Returns
The global default settings for treatment of G-U wobble pairs

void vrna_md_defaults_noGUclosure(int flag)
#include <ViennaRNA/model.h> Set default behavior for G-U pairs as closing pair for loops.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT _NO_GU_CLOSURE

Parameters

¢ flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_noGUclosure_get (void)
#include <ViennaRNA/model.h> Get default behavior for G-U pairs as closing pair for loops.

See also:
vrna_md_defaults_noGUclosure(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL DEFAULT NO_GU_CLOSURE

Returns
The global default settings for treatment of G-U pairs closing a loop

void vrna_md_defaults_logML (int flag)

#include <ViennaRNA/model h> Set default behavior recomputing free energies of multi-branch loops
using a logarithmic model.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_LOG_ML
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Parameters

¢ flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_logML_get (void)

#include <ViennaRNA/model.h> Get default behavior recomputing free energies of multi-branch loops
using a logarithmic model.

See also:
vrna_md_defaults_logML(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT LOG_ML

Returns
The global default settings for logarithmic model in multi-branch loop free energy eval-
uation

void vrna_md_defaults_circ(int flag)
#include <ViennaRNA/model.h> Set default behavior whether input sequences are circularized.

See also:

vrna_md_defaults_reset(), vima_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_CIRC

Parameters

¢ flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_circ_get (void)

#include <ViennaRNA/model.h> Get default behavior whether input sequences are circularized.

See also:
vrna_md_defaults_circ(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,

VRNA_MODEL_DEFAULT_CIRC

Returns
The global default settings for treating input sequences as circular

void vrna_md_defaults_gquad(int flag)
#include <ViennaRNA/model.h> Set default behavior for treatment of G-Quadruplexes.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_GQUAD

Parameters

¢ flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_gquad_get (void)
#include <ViennaRNA/model.h> Get default behavior for treatment of G-Quadruplexes.
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See also:
vrna_md_defaults_gquad(),  vrna_md_defaults_reset(), — vrna_md_set_default(),  vrna_md_t,
VRNA_MODEL_DEFAULT GQUAD

Returns
The global default settings for treatment of G-Quadruplexes

void vrna_md_defaults_uniq_ML (int flag)

#include <ViennaRNA/model.h> Set default behavior for creating additional matrix for unique multi-
branch loop prediction.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_UNIQ_ML

Note: Activating this option usually results in higher memory consumption!

Parameters

« flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_uniq_ML_get (void)

#include <ViennaRNA/model.h> Get default behavior for creating additional matrix for unique multi-
branch loop prediction.

See also:
vrna_md_defaults_uniq_ML(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,

VRNA_MODEL _DEFAULT_UNIQ_ML

Returns
The global default settings for creating additional matrices for unique multi-branch loop
prediction

void vrna_md_defaults_energy_set (int e)
#include <ViennaRNA/model.h> Set default energy set.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), virna_md_t, VRNA_MODEL_DEFAULT_ENERGY_SET

Parameters
e e —Energy set (0, 1, 2, 3)

int vrna_md_defaults_energy_set_get (void)
#include <ViennaRNA/model.h> Get default energy set.

See also:

vrna_md_defaults_energy_set(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL DEFAULT ENERGY_SET
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Returns
The global default settings for the energy set

void vrna_md_defaults_backtrack(int flag)
#include <ViennaRNA/model.h> Set default behavior for whether to backtrack secondary structures.

See also:

vina_md_defaults_reset(), vrna_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_BACKTRACK

Parameters

¢ flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_backtrack_get (void)
#include <ViennaRNA/model.h> Get default behavior for whether to backtrack secondary structures.

See also:
vrna_md_defaults_backtrack(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,

VRNA_MODEL_DEFAULT BACKTRACK

Returns
The global default settings for backtracking structures

void vrna_md_defaults_backtrack_type(char t)
#include <ViennaRNA/model.h> Set default backtrack type, i.e. which DP matrix is used.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT _BACKTRACK_TYPE

Parameters
e t —The type (‘F’, ‘C’, or ‘M’)

char vrna_md_defaults_backtrack_type_get (void)
#include <ViennaRNA/model.h> Get default backtrack type, i.e. which DP matrix is used.

See also:
vrna_md_defaults_backtrack_type(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT_BACKTRACK_TYPE

Returns
The global default settings that specify which DP matrix is used for backtracking

void vrna_md_defaults_compute_bpp (int flag)

#include <ViennaRNA/model.h> Set the default behavior for whether to compute base pair probabilities
after partition function computation.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_COMPUTE_BPP
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Parameters

¢ flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_compute_bpp_get (void)

#include <ViennaRNA/model.h> Get the default behavior for whether to compute base pair probabili-
ties after partition function computation.

See also:
vrna_md_defaults_compute_bpp(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,

VRNA_MODEL DEFAULT _COMPUTE_BPP

Returns
The global default settings that specify whether base pair probabilities are computed to-
gether with partition function

void vrna_md_defaults_max_bp_span(int span)
#include <ViennaRNA/model.h> Set default maximal base pair span.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_MAX_BP_SPAN

Parameters
* span — Maximal base pair span

int vrna_md_defaul ts_max_bp_span_get (void)
#include <ViennaRNA/model.h> Get default maximal base pair span.

See also:
vrna_md_defaults_max_bp_span(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,

VRNA_MODEL_DEFAULT _MAX_BP_SPAN

Returns
The global default settings for maximum base pair span

void vrna_md_defaults_min_loop_size (int size)

#include <ViennaRNA/model.h> Set default minimal loop size.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, TURN

Parameters

¢ size — Minimal size, i.e. number of unpaired nucleotides for a hairpin loop

int vrna_md_defaults_min_loop_size_get (void)
#include <ViennaRNA/model.h> Get default minimal loop size.

300 Chapter 7. Concepts and Algorithms



ViennaRNA, Release 2.6.4

See also:
vrna_md_defaults_min_loop_size(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
TURN

Returns
The global default settings for minimal size of hairpin loops

void vrna_md_defaults_window_size (int size)

#include <ViennaRNA/model.h> Set default window size for sliding window structure prediction ap-
proaches.

See also:

vina_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_WINDOW_SIZE

Parameters

» size - The size of the sliding window

int vrna_md_defaults_window_size_get (void)

#include <ViennaRNA/model.h> Get default window size for sliding window structure prediction ap-
proaches.

See also:
vrna_md_defaults_window_size(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL _DEFAULT WINDOW _SIZE

Returns
The global default settings for the size of the sliding window

void vrna_md_defaults_oldAliEn(int flag)

#include <ViennaRNA/model h> Set default behavior for whether to use old energy model for compar-
ative structure prediction.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT_ALI_OLD_EN

Note: This option is outdated. Activating the old energy model usually results in worse consensus
structure predictions.

Parameters

¢ flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_oldAliEn_get (void)

#include <ViennaRNA/model h> Get default behavior for whether to use old energy model for com-
parative structure prediction.

See also:

vrna_md_defaults_oldAliEn(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,
VRNA_MODEL_DEFAULT _ALI_OLD_EN
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Returns
The global default settings for using old energy model for comparative structure predic-
tion

void vrna_md_defaults_ribo(int flag)

#include <ViennaRNA/model.h> Set default behavior for whether to use Ribosum Scoring in compar-
ative structure prediction.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), virna_md_t, VRNA_MODEL_DEFAULT_ALI_RIBO

Parameters

¢ flag - On/Off switch (0 = OFF, else = ON)

int vrna_md_defaults_ribo_get (void)

#include <ViennaRNA/model.h> Get default behavior for whether to use Ribosum Scoring in compar-
ative structure prediction.

See also:
vrna_md_defaults_ribo(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t,

VRNA_MODEL DEFAULT ALI RIBO

Returns
The global default settings for using Ribosum scoring in comparative structure prediction

void vrna_md_defaults_cv_fact (double factor)

#include <ViennaRNA/model.h> Set the default co-variance scaling factor used in comparative struc-
ture prediction.

See also:

vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT _ALI_CV_FACT

Parameters

¢ factor — The co-variance factor

double vrna_md_defaults_cv_fact_get (void)

#include <ViennaRNA/model.h> Get the default co-variance scaling factor used in comparative struc-
ture prediction.

See also:
vrna_md_defaults_cv_fact(),  vrna_md_defaults_reset(),  vrna_md_set_default(),  vrna_md._t,
VRNA_MODEL_DEFAULT _ALI CV_FACT

Returns
The global default settings for the co-variance factor
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void vrna_md_defaults_nc_fact (double factor)
#include <ViennaRNA/model h>

See also:
vrna_md_defaults_reset(), vina_md_set_default(), vina_md_t, VRNA_MODEL_DEFAULT _ALI_NC_FACT
Parameters
e factor -

double vrna_md_defaults_nc_fact_get (void)
#include <ViennaRNA/model.h>

See also:

vrna_md_defaults_nc_fact(), vrna_md_defaults_reset(),

vrna_md_set_default(),  vrna_md_t,
VRNA_MODEL DEFAULT ALI NC _FACT

Returns

void vrna_md_defaults_sfact (double factor)

#include <ViennaRNA/model.h> Set the default scaling factor used to avoid under-/overflows in parti-
tion function computation.

See also:
vrna_md_defaults_reset(), vima_md_set_default(), virna_md_t
Parameters
» factor — The scaling factor (default: 1.07)

double vrna_md_defaults_sfact_get (void)

#include <ViennaRNA/model.h> Get the default scaling factor used to avoid under-/overflows in par-
tition function computation.

See also:
vrna_md_defaults_sfact(), vina_md_defaults_reset(), vina_md_set_default(), vina_md_t

Returns
The global default settings of the scaling factor

void vrna_md_defaults_salt (double salt)
#include <ViennaRNA/model.h> Set the default salt concentration.

Parameters

¢ salt — The sodium concentration in M (default: 1.021)
double vrna_md_defaults_salt_get(void)
#include <ViennaRNA/model.h> Get the default salt concentration.

Returns
The default salt concentration
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void vrna_md_defaults_saltMLLower (int lower)

#include <ViennaRNA/model.h> Set the default multiloop size lower bound for loop salt correciton
linear fitting.

Parameters
¢ lower - Size lower bound (number of backbone in loop)

int vrna_md_defaults_saltMLLower_get (void)

#include <ViennaRNA/model.h> Get the default multiloop size lower bound for loop salt correciton
linear fitting.

Returns
The default lower bound

void vrna_md_defaults_saltMLUpper (int upper)

#include <ViennaRNA/model.h> Set the default multiloop size upper bound for loop salt correciton
linear fitting.

Parameters
* upper — Size Upper bound (number of backbone in loop)

int vrna_md_defaults_saltMLUpper_get (void)
#include <ViennaRNA/model h> Get the default multiloop size upper bound for loop salt correciton
linear fitting.

Returns
The default upper bound

void vrna_md_defaults_saltDPXInit (int value)

#include <ViennaRNA/model.h> Set user-provided salt correciton for duplex initialization If value is
99999 the default value from fitting is used.

Parameters
¢ value - The value of salt correction for duplex initialization (in dcal/mol)

int vrna_md_defaults_saltDPXInit_get (void)
#include <ViennaRNA/model.h> Get user-provided salt correciton for duplex initialization If value is
99999 the default value from fitting is used.

Returns
The user-provided salt correction for duplex initialization

void vrna_md_defaults_saltDPXInitFact (float value)
#include <ViennaRNA/model.h>

float vrna_md_defaults_saltDPXInitFact_get (void)
#include <ViennaRNA/model.h>

void vrna_md_defaults_helical_rise(float value)
#include <ViennaRNA/model.h>

float vrna_md_defaults_helical_rise_get (void)
#include <ViennaRNA/model.h>

void vrna_md_defaults_backbone_length(float value)
#include <ViennaRNA/model.h>

float vrna_md_defaul ts_backbone_length_get (void)
#include <ViennaRNA/model.h>
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void set_model_details (vrna_md_t *md)
#include <ViennaRNA/model.h> Set default model details.

Use this function if you wish to initialize a vrna_md_t data structure with its default values, i.e. the

global model settings as provided by the deprecated global variables.

Deprecated:

This function will vanish as soon as backward compatibility of RNAlib is dropped (expected in

version 3). Use vrna_md_set_default() instead!

Parameters

e md — A pointer to the data structure that is about to be initialized

char *option_string(void)
#include <ViennaRNA/model.h>

Variables

double temperature

Rescale energy parameters to a temperature in degC.

Default is 37C. You have to call the update_..._params() functions after changing this parameter.

Deprecated:
Use vrna_md_defaults_temperature(), and vina_md_defaults_temperature_get() to change, and
read the global default temperature settings

See also:

vrna_md_defaults_temperature(), vina_md_defaults_temperature_get(), vina_md_defaults_reset()

double pf_scale

A scaling factor used by pf fold() to avoid overflows.

Should be set to approximately exp((—F/kT)/length), where F is an estimate for the ensemble free
energy, for example the minimum free energy. You must call update_pf params() after changing this
parameter.

If pf_scale is -1 (the default) , an estimate will be provided automatically when computing partition
functions, e.g. pf fold() The automatic estimate is usually insufficient for sequences more than a few
hundred bases long.

int dangles

Switch the energy model for dangling end contributions (0, 1, 2, 3)

If set to 0 no stabilizing energies are assigned to bases adjacent to helices in free ends and multiloops
(so called dangling ends). Normally (dangles = 1) dangling end energies are assigned only to unpaired
bases and a base cannot participate simultaneously in two dangling ends. In the partition function
algorithm pf fold() these checks are neglected. If dangles is set to 2, all folding routines will follow this
convention. This treatment of dangling ends gives more favorable energies to helices directly adjacent
to one another, which can be beneficial since such helices often do engage in stabilizing interactions
through co-axial stacking.

If dangles = 3 co-axial stacking is explicitly included for adjacent helices in multiloops. The option
affects only mfe folding and energy evaluation ( fold() and energy_of _structure()), as well as suboptimal
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folding (subopt()) via re-evaluation of energies. Co-axial stacking with one intervening mismatch is
not considered so far.

Default is 2 in most algorithms, partition function algorithms can only handle 0 and 2

int tetra_loop

Include special stabilizing energies for some tri-, tetra- and hexa-loops;.

default is 1.

int noLonelyPairs

Global switch to avoid/allow helices of length 1.

Disallow all pairs which can only occur as lonely pairs (i.e. as helix of length 1). This avoids lonely
base pairs in the predicted structures in most cases.

int noGU
Global switch to forbid/allow GU base pairs at all.

int no_closingGU

GU allowed only inside stacks if set to 1.

int circ

backward compatibility variable.. this does not effect anything

int gquad

Allow G-quadruplex formation.

int uniq_ML

do ML decomposition uniquely (for subopt)

int energy_set
0 = BP; I=any with GC; 2=any with AU-parameter

If set to 1 or 2: fold sequences from an artificial alphabet ABCD..., where A pairs B, C pairs D, etc.
using either GC (1) or AU parameters (2); default is 0, you probably don’t want to change it.

int do_backtrack

do backtracking, i.e. compute secondary structures or base pair probabilities

If 0, do not calculate pair probabilities in pf_fold(); this is about twice as fast. Default is 1.

char backtrack_type

A backtrack array marker for inverse_fold()

If set to ‘C’: force (1,N) to be paired, ‘M’ fold as if the sequence were inside a multiloop. Otherwise
(‘F’) the usual mfe structure is computed.

char *nonstandards

contains allowed non standard base pairs

Lists additional base pairs that will be allowed to form in addition to GC, CG, AU, UA, GU and UG.
Nonstandard base pairs are given a stacking energy of 0.
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int max_bp_span

Maximum allowed base pair span.

A value of -1 indicates no restriction for distant base pairs.

int 01dA1iEn

use old alifold energies (with gaps)

int ribo

use ribosum matrices

double cv_fact

double nc_fact

int logML

if nonzero use logarithmic ML energy in energy_of_struct

double salt

salt concentration

int saltDPXInit

Salt correction for duplex initialization.

float helical_rise

float backbone_length

struct vrna_md_s

#include <ViennaRNA/model.h> The data structure that contains the complete model details used
throughout the calculations.

For convenience reasons, we provide the type name vrna_md_t to address this data structure without
the use of the struct keyword

SWIG Wrapper Notes:

This data structure is wrapped as an object md with multiple related functions attached as methods.

A new set of default parameters can be obtained by calling the constructure of md:

e md() &#8212; Initialize with default settings
The resulting object has a list of attached methods which directly correspond to functions that
mainly operate on the corresponding C data structure:

* reset() - vrna_md_set_default()

e set_from_globals() - set_model_details()

* option_string() - vrna_md_option_string()
Note, that default parameters can be modified by directly setting any of the following global vari-
ables. Internally, getting/setting default parameters using their global variable representative trans-
lates into calls of the following functions, therefore these wrappers for these functions do not exist
in the scripting language interface(s):
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global variable C getter

C setter

temperature
dangles
betaScale
tetra_loop

special_hp
noLonelyPairs

noLLP
noGU
no_closingGU

noGUclosure
logML

circ

gquad

uniq_ ML
energy_set
backtrack
backtrack_type
do_backtrack

compute_bpp
max_bp_span
min_loop_size
window_size

vrna_md_defaults_temperature_get()
vrna_md_defaults_dangles_get()
vrna_md_defaults_betaScale_get()
this is an alias of special_hp

vrna_md_defaults_special_hp_get()
this is an alias of noLP

vrna_md_defaults_noLP_get()
vrna_md_defaults_noGU_get()
this is an alias of noGUclosure

vrna_md_defaults_noGUclosure_get()
vrna_md_defaults_logML_get()
vrna_md_defaults_circ_get()
vrna_md_defaults_gquad_get()
vrna_md_defaults_uniq_ML_get()
vrna_md_defaults_energy_set_get()
vrna_md_defaults_backtrack_get()

vrna_md_defaults_backtrack_type_get()

this is an alias of compute_bpp

vrna_md_defaults_compute_bpp_get()
vrna_md_defaults_max_bp_span_get()
vrna_md_defaults_min_loop_size_get()
vrna_md_defaults_window_size_get()

vrna_md_defaults_temperature()
vrna_md_defaults_dangles()
vrna_md_defaults_betaScale()

vrna_md_defaults_special_hp()

vrna_md_defaults_noLP()
vrna_md_defaults_noGU()

vrna_md_defaults_noGUclosure()
vrna_md_defaults_logML()
vrna_md_defaults_circ()
vrna_md_defaults_gquad()
vrna_md_defaults_unig_ML()
vrna_md_defaults_energy_set()
vrna_md_defaults_backtrack()
vrna_md_defaults_backtrack_type()

vrna_md_defaults_compute_bpp()
vrna_md_defaults_max_bp_span()
vrna_md_defaults_min_loop_size()
vrna_md_defaults_window_size()

oldAliEn vrna_md_defaults_oldAliEn_get() vrna_md_defaults_oldAliEn()

ribo vrna_md_defaults_ribo_get() vrna_md_defaults_ribo()

cv_fact vrna_md_defaults_cv_fact_get() vrna_md_defaults_cv_fact()

nc_fact vrna_md_defaults_nc_fact_get() vrna_md_defaults_nc_fact()

sfact vrna_md_defaults_sfact_get() vrna_md_defaults_sfact()
See also:

vrna_md_set_default(), set_model_details(), vrna_md_update(), vrna_md_t

Public Members

double temperature

The temperature used to scale the thermodynamic parameters.

double betaScale

A scaling factor for the thermodynamic temperature of the Boltzmann factors.

int p£_smooth

A flat specifying whether energies in Boltzmann factors need to be smoothed.

int dangles

Specifies the dangle model used in any energy evaluation (0,1,2 or 3)

If set to 0 no stabilizing energies are assigned to bases adjacent to helices in free ends and multi-
loops (so called dangling ends). Normally (dangles = 1) dangling end energies are assigned only
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to unpaired bases and a base cannot participate simultaneously in two dangling ends. In the parti-
tion function algorithm vrna_pf{) these checks are neglected. To provide comparability between
free energy minimization and partition function algorithms, the default setting is 2. This treatment
of dangling ends gives more favorable energies to helices directly adjacent to one another, which
can be beneficial since such helices often do engage in stabilizing interactions through co-axial
stacking.

If set to 3 co-axial stacking is explicitly included for adjacent helices in multiloops. The option
affects only mfe folding and energy evaluation ( vrna_mfe() and vrna_eval_structure()), as well
as suboptimal folding (vrna_subopt()) via re-evaluation of energies. Co-axial stacking with one
intervening mismatch is not considered so far. Note, that some function do not implement all
dangle model but only a subset of (0,1,2,3). In particular, partition function algorithms can only
handle 0 and 2. Read the documentation of the particular recurrences or energy evaluation function
for information about the provided dangle model.

int special_hp

Include special hairpin contributions for tri, tetra and hexaloops.

int noLP

Only consider canonical structures, i.e. no ‘lonely’ base pairs.

int noGU

Do not allow GU pairs.

int noGUclosure

Do not allow loops to be closed by GU pair.

int 1ogML

Use logarithmic scaling for multiloops.

int circ

Assume RNA to be circular instead of linear.

int gquad

Include G-quadruplexes in structure prediction.

int uniq_ML

Flag to ensure unique multi-branch loop decomposition during folding.

int energy_set

Specifies the energy set that defines set of compatible base pairs.

int backtrack

Specifies whether or not secondary structures should be backtraced.

char backtrack_type

Specifies in which matrix to backtrack.

int compute_bpp

Specifies whether or not backward recursions for base pair probability (bpp) computation will be
performed.
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char nonstandards[64]

contains allowed non standard bases

int max_bp_span

maximum allowed base pair span

int min_loop_size
Minimum size of hairpin loops.

The default value for this field is TURN, however, it may be O in cofolding context.

int window_size

Size of the sliding window for locally optimal structure prediction.

int 01dAliEn
Use old alifold energy model.

int ribo

Use ribosum scoring table in alifold energy model.

double cv_fact

Co-variance scaling factor for consensus structure prediction.

double nc_fact

Scaling factor to weight co-variance contributions of non-canonical pairs.

double sfact

Scaling factor for partition function scaling.

int rtype[8]

Reverse base pair type array.

short alias[MAXALPHA + 1]

alias of an integer nucleotide representation

int pair[MAXALPHA + 1][MAXALPHA + 1]

Integer representation of a base pair.

float pair_dist[7][7]

Base pair dissimilarity, a.k.a. distance matrix.

double salt

Salt (monovalent) concentration (M) in buffer.

int saltMLLower

Lower bound of multiloop size to use in loop salt correction linear fitting.

int saltMLUpper

Upper bound of multiloop size to use in loop salt correction linear fitting.
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int saltDPXInit

User-provided salt correction for duplex initialization (in dcal/mol). If set to 99999 the default salt
correction is used. If set to O there is no salt correction for duplex initialization.

float saltDPXInitFact

float helical_rise

float backbone_length

7.2.2 Unstructured Domains

Add and modify unstructured domains to the RNA folding grammar.

This module provides the tools to add and modify unstructured domains to the production rules of the RNA folding
grammar. Usually this functionality is utilized for incorporating ligand binding to unpaired stretches of an RNA.

Warning: Although the additional production rule(s) for unstructured domains as descibed in Unstructured
Domains are always treated as segments possibly bound to one or more ligands, the current implementation
requires that at least one ligand is bound. The default implementation already takes care of the required changes,
however, upon using callback functions other than the default ones, one has to take care of this fact. Please also
note, that this behavior might change in one of the next releases, such that the decomposition schemes as shown
above comply with the actual implementation.

A default implementation allows one to readily use this feature by simply adding sequence motifs and correspond-
ing binding free energies with the function vrna_ud_add_motif() (see also Ligands Binding to Unstructured
Domains).

The grammar extension is realized using a callback function that

* evaluates the binding free energy of a ligand to its target sequence segment (white boxes in the figures above),
or

* returns the free energy of an unpaired stretch possibly bound by a ligand, stored in the additional U DP matrix.

The callback is passed the segment positions, the loop context, and which of the two above mentioned evaluations
are required. A second callback implements the pre-processing step that prepares the U DP matrix by evaluating
all possible cases of the additional production rule. Both callbacks have a default implementation in RNAIib, but
may be over-written by a user-implementation, making it fully user-customizable.

For equilibrium probability computations, two additional callbacks exist. One to store/add and one to retrieve the
probability of unstructured domains at particular positions. Our implementation already takes care of computing
the probabilities, but users of the unstructured domain feature are required to provide a mechanism to efficiently
store/add the corresponding values into some external data structure.
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Defines

VRNA_UNSTRUCTURED_DOMAIN_EXT_LOOP

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand bound to unpiared stretch in
the exterior loop.

VRNA_UNSTRUCTURED_DOMAIN_HP_LOOP

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand bound to unpaired stretch in
a hairpin loop.

VRNA_UNSTRUCTURED_DOMAIN_INT_LOOP

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand bound to unpiared stretch in
an interior loop.

VRNA_UNSTRUCTURED_DOMAIN_MB_LOOP

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand bound to unpiared stretch in
a multibranch loop.

VRNA_UNSTRUCTURED_DOMAIN_MOTIF

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand binding without additional
unbound nucleotides (motif-only)

VRNA_UNSTRUCTURED_DOMAIN_ALL_LOOPS

#include <ViennaRNA/unstructured_domains.h> Flag to indicate ligand bound to unpiared stretch in
any loop (convenience macro)

Typedefs

typedef struct vrna_unstructured_domain_s vrna_ud_t

#include <ViennaRNA/unstructured_domains.h> Typename for the ligand binding extension data
structure vrna_unstructured_domain_s.

typedef int (*vrna_ud_f£)(vrna_fold_compound_t *fc, int i, int j, unsigned int loop_type, void *data)

#include <ViennaRNA/unstructured_domains.h> Callback to retrieve binding free energy of a ligand
bound to an unpaired sequence segment.

Notes on Callback Functions:

This function will be called to determine the additional energy contribution of a specific unstruc-
tured domain, e.g. the binding free energy of some ligand.

Param fc
The current vrna_fold_compound_t

Param i
The start of the unstructured domain (5’ end)

Param j
The end of the unstructured domain (3’ end)

Param loop_type
The loop context of the unstructured domain
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Param data
Auxiliary data

Return
The auxiliary energy contribution in deka-cal/mol

typedef FLT_OR_DBL (*vrna_ud_exp_£)(vrna_fold_compound_t *fc, int i, int j, unsigned int loop_type,
void *data)

#include <ViennaRNA/unstructured_domains.h> Callback to retrieve Boltzmann factor of the binding
free energy of a ligand bound to an unpaired sequence segment.

Notes on Callback Functions:

This function will be called to determine the additional energy contribution of a specific unstruc-
tured domain, e.g. the binding free energy of some ligand (Partition function variant, i.e. the
Boltzmann factors instead of actual free energies).

Param fc
The current vrna_fold_compound_t

Param i
The start of the unstructured domain (5’ end)

Param j
The end of the unstructured domain (3’ end)

Param loop_type
The loop context of the unstructured domain

Param data
Auxiliary data

Return
The auxiliary energy contribution as Boltzmann factor

typedef void (*vrna_ud_production_f£)(vina_fold_compound_t *fc, void *data)

#include <ViennaRNA/unstructured_domains.h> Callback for pre-processing the production rule of
the ligand binding to unpaired stretches feature.

Notes on Callback Functions:

The production rule for the unstructured domain grammar extension

typedef void (*vrna_ud_exp_production_£)(vrna_fold_compound_t *fc, void *data)

#include <ViennaRNA/unstructured_domains.h> Callback for pre-processing the production rule of
the ligand binding to unpaired stretches feature (partition function variant)

Notes on Callback Functions:

The production rule for the unstructured domain grammar extension (Partition function variant)

typedef void (*vrna_ud_add_probs_£)(vrna_fold_compound_t *fc, int i, int j, unsigned int loop_type,
FLT_OR_DBL exp_energy, void *data)

#include <ViennaRNA/unstructured_domains.h> Callback to store/add equilibrium probability for a
ligand bound to an unpaired sequence segment.
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Notes on Callback Functions:

A callback function to store equilibrium probabilities for the unstructured domain feature

typedef FLT_OR_DBL (*vrna_ud_get_probs_=£)(vina_fold_compound_t *fc, int i, int j, unsigned int
loop_type, int motif, void *data)

#include <ViennaRNA/unstructured_domains.h> Callback to retrieve equilibrium probability for a lig-
and bound to an unpaired sequence segment.

Notes on Callback Functions:

A callback function to retrieve equilibrium probabilities for the unstructured domain feature

Functions

vrna_ud_motif_t *vrna_ud_motifs_centroid(vrna_fold _compound_t *fc, const char *structure)

#include <ViennaRNA/unstructured_domains.h> Detect unstructured domains in centroid structure.

Given a centroid structure and a set of unstructured domains compute the list of unstructured domain
motifs present in the centroid. Since we do not explicitly annotate unstructured domain motifs in dot-
bracket strings, this function can be used to check for the presence and location of unstructured domain
motifs under the assumption that the dot-bracket string is the centroid structure of the equiibrium en-
semble.

See also:

vrna_centroid()

Parameters

e fc — The fold_compound data structure with pre-computed equilibrium probabilities
and model settings

¢ structure — The centroid structure in dot-bracket notation

Returns
A list of unstructured domain motifs (possibly NULL). The last element terminates the
list with start=0, number=-1

vrna_ud_motif_t *vrna_ud_motifs_MEA(vrna_fold_compound_t *fc, const char *structure, vina_ep_t
*probability_list)
#include <ViennaRNA/unstructured_domains.h> Detect unstructured domains in MEA structure.

Given an MEA structure and a set of unstructured domains compute the list of unstructured domain
motifs present in the MEA structure. Since we do not explicitly annotate unstructured domain motifs
in dot-bracket strings, this function can be used to check for the presence and location of unstructured
domain motifs under the assumption that the dot-bracket string is the MEA structure of the equiibrium
ensemble.

See also:

MEA()

Parameters

e fc — The fold_compound data structure with pre-computed equilibrium probabilities
and model settings

¢ structure — The MEA structure in dot-bracket notation
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* probability_list — The list of probabilities to extract the MEA structure from

Returns
A list of unstructured domain motifs (possibly NULL). The last element terminates the
list with start=0, number=-1

vrna_ud_motif_t *vrna_ud_motifs_MFE (vina_fold_compound_t *fc, const char *structure)

#include <ViennaRNA/unstructured_domains.h> Detect unstructured domains in MFE structure.

Given an MFE structure and a set of unstructured domains compute the list of unstructured domain
motifs present in the MFE structure. Since we do not explicitly annotate unstructured domain motifs
in dot-bracket strings, this function can be used to check for the presence and location of unstructured
domain motifs under the assumption that the dot-bracket string is the MFE structure of the equiibrium
ensemble.

See also:

vrna_mfe()

Parameters
¢ fc — The fold_compound data structure with model settings
¢ structure — The MFE structure in dot-bracket notation

Returns
A list of unstructured domain motifs (possibly NULL). The last element terminates the
list with start=0, number=-1

void vrna_ud_add_motif (vrna_fold_compound_t *fc, const char *motif, double motif_en, const char
*motif_name, unsigned int loop_type)
#include <ViennaRNA/unstructured_domains.h> Add an unstructured domain motif, e.g. for ligand
binding.

This function adds a ligand binding motif and the associated binding free energy to the vrna_ud_t at-
tribute of a vrna_fold_compound_t. The motif data will then be used in subsequent secondary structure
predictions. Multiple calls to this function with different motifs append all additional data to a list of lig-
ands, which all will be evaluated. Ligand motif data can be removed from the vrna_fold_compound_t
again using the vrna_ud_remove() function. The loop type parameter allows one to limit the ligand
binding to particular loop type, such as the exterior loop, hairpin loops, interior loops, or multibranch
loops.

See also:
VRNA_UNSTRUCTURED_DOMAIN_EXT_LOOP, VRNA_UNSTRUCTURED_DOMAIN_HP_LOOP,
VRNA_UNSTRUCTURED_DOMAIN_INT_LOOP,VRNA_UNSTRUCTURED_DOMAIN_MB_LOOP,
VRNA_UNSTRUCTURED_DOMAIN_ALL_LOOPS, vrna_ud_remove()
Parameters
e fc — The vrna_fold_compound_t data structure the ligand motif should be bound to
* motif — The sequence motif the ligand binds to
* motif_en — The binding free energy of the ligand in kcal/mol
e motif_name — The name/id of the motif (may be NULL)

* loop_type — The loop type the ligand binds to
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void vrna_ud_remove (vrna_fold_compound_t *fc)

#include <ViennaRNA/unstructured_domains.h> Remove ligand binding to unpaired stretches.

This function removes all ligand motifs that were bound to a vrna_fold _compound_t using the
vrna_ud_add_motif() function.

SWIG Wrapper Notes:

This function is attached as method ud_remove () to objects of type fold_compound. See, e.g.
RNA. fold_compound.ud_remove () in the Python API.

Parameters

e fc — The vrna_fold_compound_t data structure the ligand motif data should be re-
moved from

void vrna_ud_set_data(vrna_fold_compound_t *fc, void *data, vina_auxdata_free_f free_cb)

#include <ViennaRNA/unstructured_domains.h> Attach an auxiliary data structure.

This function binds an arbitrary, auxiliary data structure for user-implemented ligand binding. The op-
tional callback free_cb will be passed the bound data structure whenever the vrna_fold_compound_t
is removed from memory to avoid memory leaks.

SWIG Wrapper Notes:

This function is attached as method ud_set_data() to objects of type fold_compound. See,
e.g. RNA. fold_compound.ud_set_data() in the Python API.

See also:

vrna_ud_set_prod_rule_cb(), vrna_ud_set_exp_prod_rule_cb(), vina_ud_remove()

Parameters

e fc — The vrna_fold_compound_t data structure the auxiliary data structure should be
bound to

» data — A pointer to the auxiliary data structure

» free_cb — A pointer to a callback function that free’s memory occupied by data

void vrna_ud_set_prod_rule_cb(vrna_fold_compound_t *fc, virna_ud_production_f pre_cb,

vrna_ud_f e_cb)

#include <ViennaRNA/unstructured_domains.h> Attach production rule callbacks for free energies
computations.

Use this function to bind a user-implemented grammar extension for unstructured domains.

The callback e_cb needs to evaluate the free energy contribution f (i, j) of the unpaired segment [4, j].
It will be executed in each of the regular secondary structure production rules. Whenever the call-
back is passed the VRNA_UNSTRUCTURED_DOMAIN_MOTIF flag via its loop_type parameter
the contribution of any ligand that consecutively binds from position ¢ to j (the white box) is re-
quested. Otherwise, the callback usually performs a lookup in the precomputed B matrices. Which B
matrix is addressed will be indicated by the flags VRNA_UNSTRUCTURED_DOMAIN_EXT_LOOP,
VRNA_UNSTRUCTURED_DOMAIN_HP_LOOP VRNA_UNSTRUCTURED_DOMAIN_INT _LOOP,
and VRNA_UNSTRUCTURED_DOMAIN_MB_LOOP. As their names already imply, they specify ex-
terior loops (F production rule), hairpin loops and interior loops (C production rule), and multibranch
loops (M and M1 production rule).

fij) = I —

i J i J
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The pre_cb callback will be executed as a pre-processing step right before the regular secondary struc-
ture rules. Usually one would use this callback to fill the dynamic programming matrices U and prepa-
rations of the auxiliary data structure vrna_unstructured_domain_s.data
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-1 j

B

g ]

i u u+l j

SWIG Wrapper Notes:

This function is attached as method ud_set_prod_rule_cb() to objects of type
fold_compound. See, e.g. RNA.fold_compound.ud_set_prod_rule_cb() in the Python
API.
Parameters

e fc - The vrna_fold_compound_t data structure the callback will be bound to

e pre_cb — A pointer to a callback function for the B production rule

* e_cb — A pointer to a callback function for free energy evaluation

void vrna_ud_set_exp_prod_rule_cb (vina_fold_compound_t *fc, vina_ud_exp_production_f

pre_cb, vina_ud_exp_f exp_e_cb)
#include <ViennaRNA/unstructured_domains.h> Attach production rule for partition function.
This function is the partition function companion of vina_ud_set_prod_rule_cb().

Use it to bind callbacks to (i) fill the U production rule dynamic programming matrices and/or prepare
the vrna_unstructured_domain_s.data, and (ii) provide a callback to retrieve partition functions for
subsegments [i, j].
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SWIG Wrapper Notes:

This function is attached as method ud_set_exp_prod_rule_cb() to objects of type
fold_compound. See, e.g. RNA.fold_compound.ud_set_exp_prod_rule_cb() in the
Python API.

See also:

vrna_ud_set_prod_rule_cb()

Parameters
e fc —The vrna_fold_compound_t data structure the callback will be bound to
» pre_cb — A pointer to a callback function for the B production rule

* exp_e_cb — A pointer to a callback function that retrieves the partition function for a
segment [¢, j] that may be bound by one or more ligands.
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struct vrna_unstructured_domain_s

#include <ViennaRNA/unstructured_domains.h> Data structure to store all functionality for ligand
binding.

Public Members

int uniq_motif_count

The unique number of motifs of different lengths.

unsigned int *uniq_motif_size

An array storing a unique list of motif lengths.

int motif_count

Total number of distinguished motifs.

char **motif

Motif sequences.

char **motif_name

Motif identifier/name.

unsigned int *motif_size

Motif lengths.

double *motif_en

Ligand binding free energy contribution.

unsigned int *motif_type

Type of motif, i.e. loop type the ligand binds to.

vrna_ud_production_f prod_cb
Callback to ligand binding production rule, i.e. create/fill DP free energy matrices.

This callback will be executed right before the actual secondary structure decompositions, and,
therefore, any implementation must not interleave with the regular DP matrices.

vrna_ud_exp_production_f exp_prod_cb

Callback to ligand binding production rule, i.e. create/fill DP partition function matrices.

vrna_ud_f energy_cb

Callback to evaluate free energy of ligand binding to a particular unpaired stretch.

vrna_ud_exp_f exp_energy_cb

Callback to evaluate Boltzmann factor of ligand binding to a particular unpaired stretch.

void *data

Auxiliary data structure passed to energy evaluation callbacks.
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vrna_auxdata_free_f free_data

Callback to free auxiliary data structure.

vrna_ud_add_probs_f probs_add

Callback to store/add outside partition function.

vrna_ud_get_probs_f probs_get

Callback to retrieve outside partition function.

7.2.3 Structured Domains

Add and modify structured domains to the RNA folding grammar.

This module provides the tools to add and modify structured domains to the production rules of the RNA folding
grammar.

Usually this functionality is utilized for incorporating self-enclosed structural modules that exhibit a more or less
complex base pairing pattern.

7.2.4 Secondary Structure Constraints

Secondary structure constraints provide an easy control of which structures the prediction algorithms actually
include into their solution space and how these structures are evaluated.

Hard Constraints

This module covers all functionality for hard constraints in secondary structure prediction.

Defines

VRNA_CONSTRAINT_DB

#include <ViennaRNA/constraints/hard.h> Flag for vina_constraints_add() to indicate that constraint
is passed in pseudo dot-bracket notation.

See also:

vrna_constraints_add(), vina_message_constraint_options( ), vina_message_constraint_options_all()

VRNA_CONSTRAINT_DB_ENFORCE_BP

#include <ViennaRNA/constraints/hard.h> Switch for dot-bracket structure constraint to enforce base
pairs.

This flag should be used to really enforce base pairs given in dot-bracket constraint rather than just
weakly-enforcing them.
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See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),

vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_PIPE

#include <ViennaRNA/constraints/hard.h> Flag that is used to indicate the pipe ‘|’ sign in pseudo
dot-bracket notation of hard constraints.

Use this definition to indicate the pipe sign ‘|” (paired with another base)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),

vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_DOT

#include <ViennaRNA/constraints/hard.h> dot ‘.” switch for structure constraints (no constraint at all)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),

vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_X

#include <ViennaRNA/constraints/hard.h> ‘x’ switch for structure constraint (base must not pair)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),

vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_RND_BRACK

#include <ViennaRNA/constraints/hard.h> round brackets ‘(‘,’)’ switch for structure constraint (base
i pairs base j)

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),

vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_INTRAMOL

#include <ViennaRNA/constraints/hard.h> Flag that is used to indicate the character ‘I’ in pseudo dot-
bracket notation of hard constraints.

Use this definition to indicate the usage of ‘1’ character (intramolecular pairs only)

See also:

vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()
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VRNA_CONSTRAINT_DB_INTERMOL

#include <ViennaRNA/constraints/hard.h> Flag that is used to indicate the character ‘e’ in pseudo
dot-bracket notation of hard constraints.

Use this definition to indicate the usage of ‘e’ character (intermolecular pairs only)

See also:

vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

VRNA_CONSTRAINT_DB_GQUAD

#include <ViennaRNA/constraints/hard.h> ‘+ switch for structure constraint (base is involved in a
gquad)

See also:

vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),
vrna_message_constraint_options_all()

Warning: This flag is for future purposes only! No implementation recognizes it yet.

VRNA_CONSTRAINT_DB_WUSS

#include <ViennaRNA/constraints/hard.h> Flag to indicate Washington University Secondary Struc-
ture (WUSS) notation of the hard constraint string.

This secondary structure notation for RNAs is usually used as consensus secondary structure (SS_cons)
entry in Stockholm formatted files

VRNA_CONSTRAINT_DB_DEFAULT

#include <ViennaRNA/constraints/hard.h> Switch for dot-bracket structure constraint with default
symbols.

This flag conveniently combines all possible symbols in dot-bracket notation for hard constraints and
VRNA_CONSTRAINT_DB

See also:
vrna_hc_add_from_db(), vrna_constraints_add(), vrna_message_constraint_options(),

vrna_message_constraint_options_all()

VRNA_CONSTRAINT_CONTEXT_EXT_LOOP

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair in the exterior loop.

VRNA_CONSTRAINT_CONTEXT_HP_LOOP

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair encloses hairpin loop.

VRNA_CONSTRAINT_CONTEXT_INT_LOOP

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair encloses an interior loop.
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VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair encloses a multi branch
loop.

VRNA_CONSTRAINT_CONTEXT_MB_LOOP

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair is enclosed in an interior
loop.

VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC

#include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair is enclosed in a multi
branch loop.

VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS

#include <ViennaRNA/constraints/hard.h> Constraint context flag indicating any loop context.

Typedefs

typedef struct vrna_hc_s vrna_hc_t

#include <ViennaRNA/constraints/hard.h> Typename for the hard constraints data structure
vrna_hc_s.

typedef struct vina_hc_up_s vrna_hc_up_t

#include <ViennaRNA/constraints/hard.h> Typename for the single nucleotide hard constraint data
structure vrna_hc_up_s.

typedef unsigned char (*vrna_hc_eval_f£)(int i, int j, int k, int 1, unsigned char d, void *data)

#include <ViennaRNA/constraints/hard.h> Callback to evaluate whether or not a particular decompo-
sition step is contributing to the solution space.

This is the prototype for callback functions used by the folding recursions to evaluate generic hard
constraints. The first four parameters passed indicate the delimiting nucleotide positions of the decom-
position, and the parameter denotes the decomposition step. The last parameter data is the auxiliary
data structure associated to the hard constraints via vrna_hc_add_data(), or NULL if no auxiliary data
was added.

Notes on Callback Functions:

This callback enables one to over-rule default hard constraints in secondary structure decomposi-
tions.

See also:

VRNA_DECOMP_PAIR_HP, VRNA_DECOMP_PAIR_IL, VRNA_DECOMP_PAIR_ML,
VRNA_DECOMP_ML_ML_ML, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_ML_ML,
VRNA_DECOMP_MIL_UP, VRNA_DECOMP_ML_ML_STEM, VRNA_DECOMP_MIL_COAXIAL,
VRNA_DECOMP_EXT_EXT, VRNA_DECOMP_EXT _UP, VRNA_DECOMP_EXT_STEM,
VRNA_DECOMP_EXT _EXT EXT, VRNA_DECOMP_EXT _STEM_EXT,
VRNA_DECOMP_EXT_EXT STEM, VRNA_DECOMP_EXT EXT STEMI, vrna_hc_add_f(),
vrna_hc_add_data()

Param i
Left (5°) delimiter position of substructure
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Param j
Right (3’) delimiter position of substructure

Param k
Left delimiter of decomposition

Param |
Right delimiter of decomposition

Param d
Decomposition step indicator

Param data
Auxiliary data

Return
A non-zero value if the decomposition is valid, 0 otherwise

Functions

void vrna_constraints_add (vrna_fold_compound_t *fc, const char *constraint, unsigned int options)

#include <ViennaRNA/constraints/basic.h> Add constraints to a vina_fold_compound_t data struc-
ture.

Use this function to add/update the hard/soft constraints The function allows for passing a string
‘constraint’ that can either be a filename that points to a constraints definition file or it may be
a pseudo dot-bracket notation indicating hard constraints. For the latter, the user has to pass the
VRNA_CONSTRAINT_DB option. Also, the user has to specify, which characters are allowed to be
interpreted as constraints by passing the corresponding options via the third parameter.

The following is an example for adding hard constraints given in pseudo dot-bracket notation. Here,
fc is the vrna_fold_compound_t object, structure is a char array with the hard constraint in dot-
bracket notation, and enforceConstraints is a flag indicating whether or not constraints for base
pairs should be enforced instead of just doing a removal of base pair that conflict with the constraint.

unsigned int constraint_options = VRNA_CONSTRAINT_DB_DEFAULT;

if (enforceConstraints)
constraint_options |= VRNA_CONSTRAINT_DB_ENFORCE_BP;

if (canonicalBPonly)
constraint_options |= VRNA_CONSTRAINT_DB_CANONICAL_BP;

vrna_constraints_add(fc, (const char *)cstruc, constraint_options);

In constrat to the above, constraints may also be read from file:

[ vrna_constraints_add(fc, constraints_file, VRNA_OPTION_DEFAULT);

See also:

vrna_hc_add_from_db(), vrna_hc_add_up(), vrna_hc_add_up_batch()
vrna_hc_add_bp_unspecific(), vrna_hc_add_bp(), vrna_hc_init(), vrna_sc_set_up(),
vrna_sc_set_bp(), vrna_sc_add_SHAPE_deigan(), vrna_sc_add_SHAPE_zarringhalam(),

vrna_hc_free(), vrna_sc_free(), VRNA_CONSTRAINT_DB, VRNA_CONSTRAINT_DB_DEFAULT,
VRNA_CONSTRAINT _DB_PIPE, VRNA_CONSTRAINT _DB_DOT, VRNA_CONSTRAINT DB_X,
VRNA_CONSTRAINT_DB_ANG_BRACK, VRNA_CONSTRAINT _DB_RND_BRACK,
VRNA_CONSTRAINT_DB_INTRAMOL, VRNA_CONSTRAINT_DB_INTERMOL,
VRNA_CONSTRAINT_DB_GQUAD
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Parameters
¢ fc - The fold compound

e constraint — A string with either the filename of the constraint definitions or a pseudo
dot-bracket notation of the hard constraint. May be NULL.

¢ options — The option flags
void vrna_hc_init (vrna_fold_compound_t *fc)
#include <ViennaRNA/constraints/hard.h> Initialize/Reset hard constraints to default values.

This function resets the hard constraints to their default values, i.e. all positions may be unpaired in
all contexts, and base pairs are allowed in all contexts, if they resemble canonical pairs. Previously set
hard constraints will be removed before initialization.

SWIG Wrapper Notes:

This function is attached as method hc_init() to objects of type fold_compound. See, e.g.
RNA. fold_compound.hc_init() in the Python API .

See also:

vrna_hc_add_bp(), vrna_hc_add_bp_nonspecific(), vina_hc_add_up()

Parameters

e fc — The fold compound

void vrna_hc_add_up (vrna_fold_compound_t *fc, int i, unsigned char option)

#include <ViennaRNA/constraints/hard.h> Make a certain nucleotide unpaired.

See also:

vrna_hc_add_bp(), vrna_hc_add_bp_nonspecific(), vrna_hc_init(),
VRNA_CONSTRAINT_CONTEXT_EXT LOOP, VRNA_CONSTRAINT_CONTEXT_HP_LOOP,
VRNA_CONSTRAINT_CONTEXT_INT _LOOP, VRNA_CONSTRAINT _CONTEXT_MB_LOOP,

VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS

Parameters
e fc —The vrna_fold_compound_t the hard constraints are associated with
¢ 1 — The position that needs to stay unpaired (1-based)

¢ option — The options flag indicating how/where to store the hard constraints

int vrna_hc_add_up_batch(vrna_fold_compound_t *fc, vina_hc_up_t *constraints)
#include <ViennaRNA/constraints/hard.h> Apply a list of hard constraints for single nucleotides.
Parameters
e fc - The vrna_fold_compound_t the hard constraints are associated with

¢ constraints — The list off constraints to apply, last entry must have position attribute
setto 0

int vrna_hc_add_bp (vrna_fold_compound_t *fc, int i, int j, unsigned char option)

#include <ViennaRNA/constraints/hard.h> Favorize/Enforce a certain base pair (i,j)
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See also:

vrna_hc_add_bp_nonspecific(), vrna_hc_add_up(), vrna_hc_init(),

VRNA_CONSTRAINT _CONTEXT_EXT_LOOP, VRNA_CONSTRAINT _CONTEXT_HP_LOOP,

VRNA_CONSTRAINT _CONTEXT INT_LOOP,VRNA_CONSTRAINT _CONTEXT _INT _LOOP_ENC,
VRNA_CONSTRAINT_CONTEXT_MB_LOOP,VRNA_CONSTRAINT _CONTEXT_MB_LOOP_ENC,

VRNA_CONSTRAINT_CONTEXT_ENFORCE, VRNA_CONSTRAINT _CONTEXT _ALL_LOOPS

Parameters
e fc —The vrna_fold_compound_t the hard constraints are associated with
¢ 1 —The 5’ located nucleotide position of the base pair (1-based)
¢ j — The 3’ located nucleotide position of the base pair (1-based)

» option — The options flag indicating how/where to store the hard constraints

void vrna_hc_add_bp_nonspecific(vrna_fold_compound_t *fc, int i, int d, unsigned char option)

#include <ViennaRNA/constraints/hard.h> Enforce a nucleotide to be paired (upstream/downstream)

See also:

vrna_hc_add_bp(), vrna_hc_add_up(), virna_hc_init(), VRNA_CONSTRAINT_CONTEXT_EXT_LOOP,
VRNA_CONSTRAINT _CONTEXT_HP_LOOP, VRNA_CONSTRAINT _CONTEXT _INT_LOORP,
VRNA_CONSTRAINT_CONTEXT_INT _LOOP_ENC,VRNA_CONSTRAINT _CONTEXT_MB_LOOP,
VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC,VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS

Parameters
e fc —The vrna_fold_compound_t the hard constraints are associated with
¢ 1 — The position that needs to stay unpaired (1-based)

e d — The direction of base pairing ( d < 0: pairs upstream, d > 0: pairs downstream,
d == 0: no direction)

* option — The options flag indicating in which loop type context the pairs may appear
void vrna_hc_free(vrna_hc_t *hc)
#include <ViennaRNA/constraints/hard.h> Free the memory allocated by a vrna_hc_t data structure.

Use this function to free all memory that was allocated for a data structure of type vina_hc_t .

See also:
get_hard_constraints(), vrna_hc_t

int vrna_hc_add_from_db (vrna_fold_compound_t *fc, const char *constraint, unsigned int options)
#include <ViennaRNA/constraints/hard.h> Add hard constraints from pseudo dot-bracket notation.

This function allows one to apply hard constraints from a pseudo dot-bracket notation.
The options parameter controls, which characters are recognized by the parser. Use the
VRNA_CONSTRAINT_DB_DEFAULT convenience macro, if you want to allow all known characters

SWIG Wrapper Notes:

This function is attached as method hc_add_from_db () to objects of type fold_compound. See,
e.g. RNA. fold_compound.hc_add_from_db() in the Python API .
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See also:

VRNA_CONSTRAINT _DB_PIPE, VRNA_CONSTRAINT _DB_DOT, VRNA_CONSTRAINT DB X,
VRNA_CONSTRAINT_DB_ANG_BRACK, VRNA_CONSTRAINT_DB_RND_BRACK,
VRNA_CONSTRAINT _DB_INTRAMOL, VRNA_CONSTRAINT _DB_INTERMOL,

VRNA_CONSTRAINT_DB_GQUAD

Parameters
e fc — The fold compound
e constraint — A pseudo dot-bracket notation of the hard constraint.

¢ options — The option flags

struct vrna_hc_s

#include <ViennaRNA/constraints/hard.h> The hard constraints data structure.

The content of this data structure determines the decomposition pattern used in the folding recursions.
Attribute ‘matrix’ is used as source for the branching pattern of the decompositions during all folding
recursions. Any entry in matrix[i,j] consists of the 6 LSB that allows one to distinguish the following
types of base pairs:

* in the exterior loop (VRNA_CONSTRAINT _CONTEXT _EXT LOOP)

* enclosing a hairpin (VRNA_CONSTRAINT _CONTEXT _HP_LOOP)

* enclosing an interior loop (VRNA_CONSTRAINT _CONTEXT _INT_LOOP)

* enclosed by an exterior loop (VRNA_CONSTRAINT _CONTEXT _INT _LOOP_ENC)

* enclosing a multi branch loop (VRNA_CONSTRAINT _CONTEXT _MB_LOOP)

* enclosed by a multi branch loop (VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC)

The four linear arrays ‘up_xxx’ provide the number of available unpaired nucleotides (including posi-
tion i) 3’ of each position in the sequence.

See also:
vrna_hc_init(), vrna_hc_free(), VRNA_CONSTRAINT _CONTEXT_EXT LOOP,
VRNA_CONSTRAINT _CONTEXT_HP_LOOP, VRNA_CONSTRAINT _CONTEXT _INT _LOOP,

VRNA_CONSTRAINT _CONTEXT MB_LOOP, VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC

Public Members

vrna_hc_type_e type

unsigned int n

unsigned char state

unsigned char *mx

unsigned char **matrix_local

union vrna_hc_s
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int *up_ext

A linear array that holds the number of allowed unpaired nucleotides in an exterior loop.

int *up_hp

A linear array that holds the number of allowed unpaired nucleotides in a hairpin loop.

int *up_int

A linear array that holds the number of allowed unpaired nucleotides in an interior loop.

int *up_ml

A linear array that holds the number of allowed unpaired nucleotides in a multi branched loop.

vrna_hc_eval_f £

A function pointer that returns whether or not a certain decomposition may be evaluated.

void *data

A pointer to some structure where the user may store necessary data to evaluate its generic hard
constraint function.

vrna_auxdata_free_f free_data

A pointer to a function to free memory occupied by auxiliary data.

The function this pointer is pointing to will be called upon destruction of the vrna_hc_s, and
provided with the vrna_hc_s.data pointer that may hold auxiliary data. Hence, to avoid leaking
memory, the user may use this pointer to free memory occupied by auxiliary data.

vrna_hc_depot_t *depot

struct vrna_hc_up_s

#include <ViennaRNA/constraints/hard.h> A single hard constraint for a single nucleotide.

Public Members

int position

The sequence position (1-based)

int strand

unsigned char options

The hard constraint option
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Soft Constraints

Functions and data structures for secondary structure soft constraints.

Soft-constraints are used to change position specific contributions in the recursions by adding bonuses/penalties in
form of pseudo free energies to certain loop configurations.

Typedefs

typedef struct vrna_sc_s vrna_sc_t

#include <ViennaRNA/constraints/soft.h> Typename for the soft constraints data structure vrna_sc_s.

typedef int (*vrna_sc_£)(int i, int j, int k, int 1, unsigned char d, void *data)

#include <ViennaRNA/constraints/soft.h> Callback to retrieve pseudo energy contribution for soft con-
straint feature.

This is the prototype for callback functions used by the folding recursions to evaluate generic soft
constraints. The first four parameters passed indicate the delimiting nucleotide positions of the decom-
position, and the parameter denotes the decomposition step. The last parameter data is the auxiliary
data structure associated to the hard constraints via vina_sc_add_data(), or NULL if no auxiliary data
was added.

Notes on Callback Functions:

This callback enables one to add (pseudo-)energy contributions to individual decompositions of
the secondary structure.

See also:

VRNA_DECOMP_PAIR_HP, VRNA_DECOMP_PAIR_IL, VRNA_DECOMP_PAIR_ML,
VRNA_DECOMP_ML_ML_ML, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_ML_ML,
VRNA_DECOMP_ML_UP, VRNA_DECOMP_ML_ML_STEM, VRNA_DECOMP_ML_COAXIAL,
VRNA_DECOMP_EXT _EXT, VRNA_DECOMP_EXT_UP, VRNA_DECOMP_EXT _STEM,
VRNA_DECOMP_EXT_EXT_EXT, VRNA_DECOMP_EXT_STEM_EXT,
VRNA_DECOMP_EXT EXT STEM, VRNA_DECOMP_EXT EXT STEMI, vrna_sc_add_f{(),
vrna_sc_add_exp_f{), vrna_sc_add_bt(), vrna_sc_add_data()

Param i
Left (5°) delimiter position of substructure

Param j
Right (3’) delimiter position of substructure

Param k
Left delimiter of decomposition

Param |
Right delimiter of decomposition

Param d
Decomposition step indicator

Param data
Auxiliary data

Return
Pseudo energy contribution in deka-kalories per mol
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typedef FLT_OR_DBL (*vrna_sc_exp_£)(int i, int j, int k, int 1, unsigned char d, void *data)

#include <ViennaRNA/constraints/soft.h> Callback to retrieve pseudo energy contribution as Boltz-
mann Factors for soft constraint feature.

This is the prototype for callback functions used by the partition function recursions to evaluate generic
soft constraints. The first four parameters passed indicate the delimiting nucleotide positions of the de-
composition, and the parameter denotes the decomposition step. The last parameter data is the aux-
iliary data structure associated to the hard constraints via vrna_sc_add_data(), or NULL if no auxiliary
data was added.

Notes on Callback Functions:

This callback enables one to add (pseudo-)energy contributions to individual decompositions of
the secondary structure (Partition function variant, i.e. contributions must be returned as Boltz-
mann factors).

See also:

VRNA_DECOMP_PAIR_HP, VRNA_DECOMP_PAIR_IL, VRNA_DECOMP_PAIR_ML,
VRNA_DECOMP_ML_ML_ML, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_ML_ML,
VRNA_DECOMP_ML_UP, VRNA_DECOMP_ML_ML_STEM, VRNA_DECOMP_ML_COAXIAL,
VRNA_DECOMP_EXT_EXT, VRNA_DECOMP_EXT _UP, VRNA_DECOMP_EXT_STEM,
VRNA_DECOMP_EXT _EXT EXT, VRNA_DECOMP_EXT _STEM_EXT,
VRNA_DECOMP_EXT _EXT _STEM, VRNA_DECOMP_EXT EXT_STEMI, vrna_sc_add_exp_f{),
vrna_sc_add_f{), vrna_sc_add_bt(), vrna_sc_add_data()

Param i
Left (5’) delimiter position of substructure

Param j
Right (3’) delimiter position of substructure

Param k
Left delimiter of decomposition

Param |
Right delimiter of decomposition

Param d
Decomposition step indicator

Param data
Auxiliary data

Return
Pseudo energy contribution in deka-kalories per mol

typed