sig
exception Unreachable
module type G =
sig
type t
module V : Sig.COMPARABLE
val pred : Dominator.G.t -> V.t -> V.t list
val succ : Dominator.G.t -> V.t -> V.t list
val fold_vertex : (V.t -> 'a -> 'a) -> Dominator.G.t -> 'a -> 'a
val iter_vertex : (V.t -> unit) -> Dominator.G.t -> unit
val iter_succ : (V.t -> unit) -> Dominator.G.t -> V.t -> unit
val nb_vertex : Dominator.G.t -> int
end
module type S =
sig
type t
type vertex
module S :
sig
type elt = vertex
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val disjoint : t -> t -> bool
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val map : (elt -> elt) -> t -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val min_elt_opt : t -> elt option
val max_elt : t -> elt
val max_elt_opt : t -> elt option
val choose : t -> elt
val choose_opt : t -> elt option
val split : elt -> t -> t * bool * t
val find : elt -> t -> elt
val find_opt : elt -> t -> elt option
val find_first : (elt -> bool) -> t -> elt
val find_first_opt : (elt -> bool) -> t -> elt option
val find_last : (elt -> bool) -> t -> elt
val find_last_opt : (elt -> bool) -> t -> elt option
val of_list : elt list -> t
val to_seq_from : elt -> t -> elt Seq.t
val to_seq : t -> elt Seq.t
val add_seq : elt Seq.t -> t -> t
val of_seq : elt Seq.t -> t
end
type idom = Dominator.S.vertex -> Dominator.S.vertex
type idoms = Dominator.S.vertex -> Dominator.S.vertex -> bool
type dom_tree = Dominator.S.vertex -> Dominator.S.vertex list
type dominators = Dominator.S.vertex -> Dominator.S.vertex list
type dom = Dominator.S.vertex -> Dominator.S.vertex -> bool
type sdom = Dominator.S.vertex -> Dominator.S.vertex -> bool
type dom_frontier = Dominator.S.vertex -> Dominator.S.vertex list
val compute_idom :
Dominator.S.t ->
Dominator.S.vertex -> Dominator.S.vertex -> Dominator.S.vertex
val dominators_to_dom :
('a -> Dominator.S.S.t) -> Dominator.S.vertex -> 'a -> bool
val dominators_to_sdom :
(Dominator.S.vertex -> Dominator.S.S.t) ->
Dominator.S.vertex -> Dominator.S.vertex -> bool
val dom_to_sdom :
(Dominator.S.vertex -> Dominator.S.vertex -> bool) ->
Dominator.S.vertex -> Dominator.S.vertex -> bool
val dominators_to_sdominators :
(Dominator.S.vertex -> Dominator.S.S.t) ->
Dominator.S.vertex -> Dominator.S.S.t
val dominators_to_idoms :
(Dominator.S.vertex -> Dominator.S.S.t) ->
Dominator.S.vertex -> Dominator.S.vertex -> bool
val dominators_to_dom_tree :
Dominator.S.t ->
?pred:(Dominator.S.t -> Dominator.S.vertex -> Dominator.S.vertex list) ->
(Dominator.S.vertex -> Dominator.S.S.t) ->
Dominator.S.vertex -> Dominator.S.S.t
val idom_to_dom_tree :
Dominator.S.t ->
(Dominator.S.vertex -> Dominator.S.vertex) ->
Dominator.S.vertex -> Dominator.S.vertex list
val idom_to_idoms :
Dominator.S.idom -> Dominator.S.vertex -> Dominator.S.vertex -> bool
val compute_dom_frontier :
Dominator.S.t ->
Dominator.S.dom_tree ->
Dominator.S.idom -> Dominator.S.vertex -> Dominator.S.vertex list
val idom_to_dominators : ('a -> 'a) -> 'a -> 'a list
val idom_to_dom :
(Dominator.S.vertex -> Dominator.S.vertex) ->
Dominator.S.vertex -> Dominator.S.vertex -> bool
end
module Make :
functor (G : G) ->
sig
type t = G.t
type vertex = G.V.t
module S :
sig
type elt = vertex
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val disjoint : t -> t -> bool
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val map : (elt -> elt) -> t -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val min_elt_opt : t -> elt option
val max_elt : t -> elt
val max_elt_opt : t -> elt option
val choose : t -> elt
val choose_opt : t -> elt option
val split : elt -> t -> t * bool * t
val find : elt -> t -> elt
val find_opt : elt -> t -> elt option
val find_first : (elt -> bool) -> t -> elt
val find_first_opt : (elt -> bool) -> t -> elt option
val find_last : (elt -> bool) -> t -> elt
val find_last_opt : (elt -> bool) -> t -> elt option
val of_list : elt list -> t
val to_seq_from : elt -> t -> elt Seq.t
val to_seq : t -> elt Seq.t
val add_seq : elt Seq.t -> t -> t
val of_seq : elt Seq.t -> t
end
type idom = vertex -> vertex
type idoms = vertex -> vertex -> bool
type dom_tree = vertex -> vertex list
type dominators = vertex -> vertex list
type dom = vertex -> vertex -> bool
type sdom = vertex -> vertex -> bool
type dom_frontier = vertex -> vertex list
val compute_idom : t -> vertex -> vertex -> vertex
val dominators_to_dom : ('a -> S.t) -> vertex -> 'a -> bool
val dominators_to_sdom : (vertex -> S.t) -> vertex -> vertex -> bool
val dom_to_sdom :
(vertex -> vertex -> bool) -> vertex -> vertex -> bool
val dominators_to_sdominators : (vertex -> S.t) -> vertex -> S.t
val dominators_to_idoms : (vertex -> S.t) -> vertex -> vertex -> bool
val dominators_to_dom_tree :
t ->
?pred:(t -> vertex -> vertex list) ->
(vertex -> S.t) -> vertex -> S.t
val idom_to_dom_tree :
t -> (vertex -> vertex) -> vertex -> vertex list
val idom_to_idoms : idom -> vertex -> vertex -> bool
val compute_dom_frontier :
t -> dom_tree -> idom -> vertex -> vertex list
val idom_to_dominators : ('a -> 'a) -> 'a -> 'a list
val idom_to_dom : (vertex -> vertex) -> vertex -> vertex -> bool
end
module type I =
sig
type t
module V : Sig.COMPARABLE
val pred : t -> V.t -> V.t list
val succ : t -> V.t -> V.t list
val fold_vertex : (V.t -> 'a -> 'a) -> t -> 'a -> 'a
val iter_vertex : (V.t -> unit) -> t -> unit
val iter_succ : (V.t -> unit) -> t -> V.t -> unit
val nb_vertex : t -> int
val create : ?size:int -> unit -> t
val add_edge : t -> V.t -> V.t -> unit
end
module Make_graph :
functor (G : I) ->
sig
type t = G.t
type vertex = G.V.t
module S :
sig
type elt = vertex
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val disjoint : t -> t -> bool
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val map : (elt -> elt) -> t -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val min_elt_opt : t -> elt option
val max_elt : t -> elt
val max_elt_opt : t -> elt option
val choose : t -> elt
val choose_opt : t -> elt option
val split : elt -> t -> t * bool * t
val find : elt -> t -> elt
val find_opt : elt -> t -> elt option
val find_first : (elt -> bool) -> t -> elt
val find_first_opt : (elt -> bool) -> t -> elt option
val find_last : (elt -> bool) -> t -> elt
val find_last_opt : (elt -> bool) -> t -> elt option
val of_list : elt list -> t
val to_seq_from : elt -> t -> elt Seq.t
val to_seq : t -> elt Seq.t
val add_seq : elt Seq.t -> t -> t
val of_seq : elt Seq.t -> t
end
type idom = vertex -> vertex
type idoms = vertex -> vertex -> bool
type dom_tree = vertex -> vertex list
type dominators = vertex -> vertex list
type dom = vertex -> vertex -> bool
type sdom = vertex -> vertex -> bool
type dom_frontier = vertex -> vertex list
val compute_idom : t -> vertex -> vertex -> vertex
val dominators_to_dom : ('a -> S.t) -> vertex -> 'a -> bool
val dominators_to_sdom : (vertex -> S.t) -> vertex -> vertex -> bool
val dom_to_sdom :
(vertex -> vertex -> bool) -> vertex -> vertex -> bool
val dominators_to_sdominators : (vertex -> S.t) -> vertex -> S.t
val dominators_to_idoms : (vertex -> S.t) -> vertex -> vertex -> bool
val dominators_to_dom_tree :
t ->
?pred:(t -> vertex -> vertex list) ->
(vertex -> S.t) -> vertex -> S.t
val idom_to_dom_tree :
t -> (vertex -> vertex) -> vertex -> vertex list
val idom_to_idoms : idom -> vertex -> vertex -> bool
val compute_dom_frontier :
t -> dom_tree -> idom -> vertex -> vertex list
val idom_to_dominators : ('a -> 'a) -> 'a -> 'a list
val idom_to_dom : (vertex -> vertex) -> vertex -> vertex -> bool
type dom_graph = unit -> t
type dom_functions = {
idom : idom;
idoms : idoms;
dom_tree : dom_tree;
dominators : dominators;
dom : dom;
sdom : sdom;
dom_frontier : dom_frontier;
dom_graph : Dominator.Make_graph.dom_graph;
}
val compute_dom_graph : Dominator.G.t -> dom_tree -> Dominator.G.t
val compute_all :
Dominator.G.t -> vertex -> Dominator.Make_graph.dom_functions
end
end