HyperSQL User Guide
HyperSQL Database Engine 2.3.4

Edited by , Blaine Simpson, and Fred Toussi

HyperS@L

HyperSQL User Guide: HyperSQL Database Engine 2.3.4
by , Blaine Simpson, and Fred Toussi

$Revision: 5631 $
Publication date 2016-05-15 15:57:21-0400

Copyright 2002-2016 Blaine Simpson, Fred Toussi and The HSQL Development Group. Permission is granted to distribute this document without
any alteration under the terms of the HSQL DB license. Y ou are not allowed to distribute or display this document on the web in an altered form.

HyperS@L

Table of Contents

(= = o PP PPPTPPPPPPTRTPPIN Xiii
Available formats for this dOCUMENTiiiiiiii e e et e Xiii
1. RUNNING @Nd USING HYPErSOL ..ttt ettt ettt ettt e et e et e e et et e e e e et e e e eaba e eeeees 1
F g1 oTo (¥ oi (oo H PSP SPPT TR PTR 1
THhE HSQLDB Jar ...ttt ettt e et e ettt e ettt e e et et e e e e e e e e e naa s 1
RUNNIiNG Datalase ACCESS TOOISciiitieeiiii ettt e e e et e e e 2
A HYPErSOQL D@BDASEiiiitiieiiii ettt ettt 2
IN-Process Access 10 Datalase CalalOgSeveeruneiiiiiieeieii et e et e et e et et e e e et eeeere e eeees 3
S V= Y oo (= PP PP TR PPPRTT 4
HYPErSOL HSQL SBIVEN oottt et r e e 4
HYPErSOL HT TP SoIVE oottt eeas 5
HYPErSQL HTTP SEIVIEL ..ot 5
Connecting t0 & Datalase SEIVENuuiiiii e e 5
SECUNLY CONSIAEIBIIONS ...evvueiiiiti ettt ettt ettt e e et e e et et e e e e et e e e esb e e eentaaeeees 6
USING MUILIPIE DELADASESvueiieiieeeeet ettt et e et e et e e 6
ACCESSING the DBeeiiii ettt et e e et e et et e e et e e et et e e e e e aees 6
CloSING the DaADESE ...ttt ettt ettt ettt et e et et e e e e a e aeee 7
Creating 8 NEW Datahaseccoouuuiiiiiiii ettt et 7
2. SOQL LBNJUBOE .eeneeiiiitieet ettt ettt ettt ettt et et eaes 9
SEANAAIAS SUPPOIT ..ttt ettt ettt e ettt e ettt e ettt s e e et et e e e e et e et e et e eenb e aees 9
SQL Data @nd TalESeeeiiiiiiiii e e aa s 9
TEMPOIAY TADIES .oeeiiiii et ettt e e et e ettt e ettt e e e en e e e ent e aees 10
PErSISIENt TaIES .ot e 10
ShOrt GUIAE tO DEEA TYPES ...ueeeiiieeeeet ettt ettt e e e et e e et e e et e e e eaaa s 11
Data TYPES aNA OPEIELIONScieertneeeitie ettt ettt et e ettt e e et et e e a et e eb e e e eea e et enaa e eennnns 12
U1 o Y o PP SUPPTTRPPPPPTT 12

2 Tolo] L= I Y o= PP PPT TR PUPPT 14
CharaCter SIING TYPES ..iiiiiiiiiii ettt ettt e et e e et eeeaa s 14
BiNary SING TYPES ettt ettt e e et e et e e et e e 15

=TT 1o T Y o= TSP PPPPTTUUPPIN 16

(o] oI D - - T PSP PPPPTT 17
Storage and Handling of JaVa ODJECEScvevuuneiiiiiiee ettt 17

Type Length, Precision and SCAIEiiiiiiiiiiiiii e 18
D= S (DT Y 0= PP PPPPPT 19
F01C= Y= I Y 1SS SRR 22
L (= 7 TP PP PTPPPI 25
ATTAY DEFINITION ... ettt e et e b 25
ATTAY REFEIENCE .ottt ettt e e et e e e e 27
ATTEY OPEIBLIONS ... eeetti i eeeeit ettt ettt ettt ettt et et e et e et e et e b r et e et et e ra e e eraans 27
INdexes and QUENY SPEEAiiiiii ittt et 29
Query Processing and OPtiMmIiSaLiONcoeeuenoiiiii ettt e et e et e e eneas 30
INdexes and CONGITIONSuiieiii ittt e et eeab e e e e 30
INAEXES AN OPEFBLIONS ...evtieieiii ettt ettt ettt e e e et e e e et e e e et e e e eaa s 31
Indexes and ORDER BY, OFFSET and LIMIT ..o 31

3. SeSSIONS AN TFANSACHIONSeeeieeieeii ettt ettt ettt e et e et e et et r e et et e e e e et e e e e et as 33
OVEIVIBIV ettt e et e e et e e e e et e e et et e e e et e e et e e e et et e b e e e s 33
Session Attributes and Variables oo 33
SESSION ATIITDULES ...t ettt ettt e ettt e e e et e e e e e e eene 34
SESSION VATBDIES ... 34
SESSION TADIES ..t 34
Transactions and CoNCUITENCY CONIOL ... oiieiiiieiiii e eeeens 35

HyperS@L HyperSQL User Guide

IV J 0= = =3 o o Vo N 35

Two Phase Locking with Snapshot 1S0lationcocouiiiiiiiiii e, 36

(oo Q@001 =01 o) 11 1024 = 36
Locks in SQL ROULINES aNA THQUEIS ..uuivuniiiiiieiii et et e e e e e e e e e e e e e e e e e e et e e st eeaneees 36
Y PSP 36
Choosing the Transaction MOGElccoouiiiiiii e e e eaeees 37
Schema and Database ChanQeoovviiiiiiii e e e e e e e e e e et e et e e anaees 38
SiMUItaneous ACCESS t0 TaADIEScovniiii i 38

A =TT o RS =S o] P 38
Session and Transaction COoNtrol SEAEMENTScovuiiiiieiiiee e e e e e e e et eaa e eeas 39
4, Schemas and Database ObJECLSuuiiiiiieiii i e e e e e e e e e e et e e st e e et e e et e e san e eatneaeanaes 46
L@ = oY T 46
Schemas and SChemMa ObJECESvuiiiiieiii e e e e e e e et e et e et e e aaneeeeas 46
NAMES AN REFEIENCES ...iitiiiiiii et e e e e e e e e e e e e et e et e e et e eaneees 47

(O T 1 o (= S = £ 47
(001 = 0] 1 = 48

[T 1T o A I 1= 49

o 0= U 49
NUMDEr SEOUENCES ...iituiiii et ee e et e e e e e e e e e e e e e et e e et e et e e et e e et e e etn e ean e eateesnneaetnaes 49
1= o 1= PP 51

R T=.T 52
(0] 015 1 = (= 52
NS = 1 0] PPN 53
10 10 =S 53
01U 11 == 54

g0 L= PPN 54

Y 101011 0 T PRSP 54
Statements for Schema Definition and Manipulationcoooviieiiiiiiiiii e 54
Common Elements and StAEMENEScoouiiiiiiiiiii e e e e e 54
R a1 Te [o= v £ 56
(0010010010 (1 aTe [@ o)1= ot £ 56
o 0= 0= O = 1o o 57

LI o LT @1 (=" o o 58

I o =Y =TT o101 = o) o S 63
View Creation and Manipulaiionoioiuiiiieeii e e e e e e e e e e e e eeen 68
Domain Creation and Manipulationcccouiiiiiiiiiie e e e e e e e e e eees 69

QI Te (o L= Ot = o] o 70

L 01011 LI O (== 1 o o IS 72

S (U< Tl @ = 1o o PPN 74

SQL Procedure SEAatEMENEeiuueiiiii e e e e e e e e e et e e e e et e e et e e e et e e e e aaaae 76
Other Schema ObJECt CrEatioNiiiiiiiiiiii e e e e e e e ees 76

The INformation SCHEMAcoouiii e e e e e et e et e ea e eeas 80
Predefined Character Sets, Collations and DOMAINScccccuiiiiiiiiiiiieiiiiecie e 80
Views in INFORMATION SCHEMA ...ttt a e 80
Visibility of INFOrMationoiiiiiii e e e e 80

N E= 10 = 10117 4 o o 80

(D e W Y/ 0 =3 1010 117 1 Lo o 81

[oo [0 Tox g o) 10! o N 81
Operations INFOMMIBEIONiiii e e e e e e e e e et e et e e et e e et e e st e eaaeeannaees 81

S @ IS -0 = o YT 81

LI 1= T A I = P 88
L@ = oY1 T 88
The IMPIEMENTALION ..o e e e e e e et e et e e et e e et e et e e aa e eatneeeanaees 88
DEfiNItion Of TaDIEScovviiiii e e e e e 88

HyperS@L HyperSQL User Guide

Scope and REASSIGNIMENTiuuiiii e e e e e e e e e e e et e e et e et e e aaeeaenns 88

Null Values in Columns of Text TahlESccvuiiiiiiiiii e e 89
(0001110 8= 1 (o o IR 89
Disconnecting TexXt TaDlESc.uiiiiiiiiiii e e e e e e e e e e 91

L= TSI L= o =P 91
Text File Global ProPertiESiiiiiiiiiii e e e e e e e e et e et e e e eaens 92
I =157 o 0] 1 PPN 93
L oo @] L1 (o) 94
L@ = oY T 94
Authorizations and ACCESS CONIOluiiiiieiii e e e e e e e e et e eaaneeeees 94
BUIIt-IN ROIES @N0 USES ...iiiiiiii i e e e e e e e e e e et e e e e eaes 95
Listing UsSers and ROIESiiiiiiiiii e e e e e e e e e e e e e ees 96
ACCESS RIGNES .ot 96
Statements for Authorization and AcCCeSS CONLIOIoeviiiiiiiieii e 97
7. Data ACCESS AN0 ChaANGE ..ovvuiiiiiiiii it et e e e e e e e e e e e e e e et e e e et e e et eaanas 102
(@< oV PR 102
CUrsors AN RESUIT SEES ...iiiiiiiii it e e e e e e e e e e et e et e e aaeeaenns 102
COolUMNS BN ROWS ...oiiiciii e e e e e e e e e e e et e e et eeaa e eanas 102

[N F= Y7o = (o o P 102

L8]0 = = o |11 PSP 103

S = 1S Y71 Y 104

[oo =1 1) Y PP 104

N U (o7 120 T 104
IDBC OVEIVIEIW .iiiiiieiiiii ettt e et e e et e e e e et e e e e et e e e e et e e e e st e e e e et e e e estnes 104
B O = 01T 1 PP 105
JDBC and Data Change StAEMENESuiiiiiiiiiie e e e e e e e e e e e e et e e e e eanaas 105
JDBC Callahle SEAEMENEuiiieiii e e et e et e et eeera s 105
JDBC REUMNED VAIUES ...ouiiiiiiiiii ettt e et e e et s e e et e e e et e 106
(LN 16 o gl D= o - (o) o 106
Y1z G = = 1.1 £ 106
[(= = | 106
REFEIENCES, BIC. ittt 110

V2= 8T o 1= o o P 111

[(=0 107 =SSP 118

PN oo =0 = (= U ot 0] 124
Other Syntax ElEMENS ..vuiii e e e e e e e e e e et e et e e et e e aanaees 126

D = W AN o0 eSS = 1= 1 = 1K 127
S C o B = 1= 141 0| A 128
L=/ . 1= PP 128
ST o U= S 128

L@ 01 YA o= o oo o 129

I o L= Yo (== o] o 129

I o] 0= N 1= o PP 132

S == o o o PP 134

(0= o (o) o P 134
(0041001 1=o I @0 11 o] 01 135

NN = 0101 o 135
(CTgoTN o 1 a0 [@) o= - 1o o 136

N0 0 1= = 1 o] o [137

S = @] 1= - 1o 0 TP 137

With Clause and RECUISIVE QUENIES .. .c.uuiiiiiiiii e e e e e e e e e e e e e e eaans 137
(@01 Y q =S o] o I 138

L@ 0 = 1 oo P 139

S o1 o P 140

HyperS@L HyperSQL User Guide

Data Change SEAatEMENESvuiiiiieii i eeii e e e e e e e e e e e e e et e e et e e et s e e e e eat e eatneeeanaeetnnees 141
[Dc L (S = < 1 1< o | S PP 141
TIUNCAEE SEALEMENT ...ttt e et e e e e e et e et e en e e e e e e e e eneenes 141
F s S = < 111 1| PP PP 142
L0l b= LIS = 1 1= | 143
Y o I = = 0 11 | PP RPTPRPRPRN 144

DiagNOStICS AN SEALEivviiiiiiciii e e e e e e e e e e e e e e e e e e e r e a e aaa 146

S @ I 1Y = o I 01U] == P 147

ROULINE DEFINITIONiiiiit et e e e e e e e e et e e e e et e e e e et e e eeaen s 148
ROULINE CRar@CLENISHICS ..vuuieiiiiiieeeiii e et e ettt e e ettt e e e ettt e e e eetreeeeatneeeeatnaaaaes 150

SQL Language ROULINES (PSM)uuiiiiiiiii et e e e e e e e e e e e e et e et e et e e aaeeaens 152
Advantages and DiSAOVANTAJEScevuuiiiiiiiiiieiie 152
ROULING SEBEEIMENES ... iiiiiiii ettt e e et e et e e e et e e e et e e e e et e e e ernn e 153
(00010 To 10 a0 IS 10101 o | PP 154
TaDIE VarahDIES ..o 154
VAIBDIES .ot e e e aaes 155
LU = o £ T PPN 155
[= 0= PRSPPI 156
ASSIGNMENT SEAEEMENT .ouu i e e e e e e e e e e e et e e e e e et e e et e e eaneeeees 157
Select Statement : SINGIE ROWu.iiii e e e e e e eaes 158
FOMEl Pal@MELES ...ovuiiiiiiiii ettt et e e et e e et e e e e et e e e eaan e eeenanns 158
e 1 0 IS = =101 1 £ PSP 159
[terated FOR SEAIEMENToiiiiiiiiiiii et e e ettt e e e et e e e e et e e e eatn s e e eeetnaeeeees 159
ConditioNal SEALEMENES .. .iiiie e e e e e e aaaan 160
S (U IS = = 11 o | PP 161
(000011 {0 IS = 1 011 0| PSP 162
L TS a0 (= o] 1o g 162
ROULINE POlYMOIPRISIM .ouiiii e e e e e e et e e et e e e eees 163
Returning Data From ProCEAUIESiiiuiiiiii e e e e e e e e e aaaas 164
RECUISIVE ROULINES ...ttt ettt et e et e e et e e e et e e e et eeeetan e 165

Java Language ROULINES (SQL/JRT) .uuuiiiiiiiiii it e e e e e e e e e et e e et e e et eeaaeeaanas 166
POlYMOIPRISIN oo 167
Java Language ProCEAUIESiiiiuieiiieii e e e e e e e e e e e e e e e e e et e e et e e et eeaaeeaanees 168
JaVA SEAEIC MEINOOSiiieii et 169
[0 T= oA U o o o g PP 170
Securing Access to Classes and ROULINESc.uuiiiiiiiiiiiie e 170
LAY 14 21 o 171

User-Defined Aggregate FUNCHIONSiiiiiiiiii e e e e e e e e et e e ea e ean s 171
Definition of AQQregate FUNCHIONSccuuiiiiiiiie e e e e e e e e e e e e e e eeaen 171
SQL PSM AQQregate FUNCLIONSc.uuiiiiiieiiiieiiiiee e e e e e e et e e e e e s s e e e e et e eetneeeanaees 172
Java AQOregate FUNCLIONScoouiiii e e e e e e e e e e e et e e et e e eaa e eeas 173

LS N 4 oo 1= PN 175

L@ N = PP 175
T O I T o L= £ N 175
F N I I ¢ [0 = S 176
NS I =N N @ i I (T fo = £ S 176

QI o L= (o] o= = 176
B0 10 L= Y= | 176
LT =011 = /P 176
I Te (o L= e v o T 02T PP 177
REFEIENCES 10 ROWS ...ttt et e et e e e e e e eees 177
B o o L= @0 o [o) o P 177
TrIQOEr ACHON 1N SOL ..ttt e e e e e e e e e et e e et e et e et e e et e e 177
TRIQOEr ACHON 1N JAVA ...iiiiiiii e e e e et e e e et e e e e e e e e e aanas 178

Vi

HyperS@L HyperSQL User Guide

I oo L= Ot =" o) o 179
10. BUIE TN FUNCLIONS ...ttt e et r e e et e e et r e e et s e e e eet e e e e et s e e e enenneeeennns 182
L@ N = PP 182
String and Binary String FUNCHIONSc.uuiiiiiiii e e e e e e e e e e e e e e e anes 183
N8 T 0 T ol g 1 PP 189
Date Time and Interval FUNCHIONSoouuuiiiiii et et e e e e eaanns 193
Functions to RePOrt the TIME ZONE.civuniiiiii e e e 193
Functions to Report the Current DatEliMEiviiiiiiiiiiii e e e e e 194
Functions to Extract an Element of a Daletimec.ovviiiiiiiiiiiiiiiece e 195
Functions for Datetime AFthMELICcoouuiiiii e 197
Functions to Convert or FOrmat a Datelimeooviiiiiiiiiiiiiie e 200

F N 4 = YA U 1 o PR 203
GENErAl FUNCHIONS ..oeiiii ittt e et e e et r e e e et e e e et e e e e et e e e eaaa s 204
VS (= 1 U o 206
S s (g Y = = e 1= T o | PPN 210
Mode of Operation and TabIESiiiiiiiii e 210
Y KoTo Lo @ o= ') o 210

(D = 0= s R N === P 210
1= o =TSSP 211
=T LI @ o= ot £ P 211

(D= o107 001= 0 o] 11t S 212
ACID, Persistence and Reliabilityc..iiiiiiiiii e 212
Atomicity, Consistency, Isolation, Durabilitycccocoiieiiiiiiiii e 213
VS0 1O o= = o] PP 213
Backing Up and Restoring Database CafalOgScvvvrieirneiiiieiiieeeiiieeie e e e e e s e et e e e eeaas 214
MaKiNG ONliNE BACKUDPSuuiiiiiiiiiie e e e e e e e e e e e e e et e e et e e e eanaas 214
Offline Backup ULIlIty SYNAXcovuiiiiiiiiii e e e e e e e e e 214
MaKing OffliNE BACKUPSuuiiiiiiiiiiiii e e e e e e e e e e e e e et e et e e e e e aaneeaens 215
EXaMINING BaCKUDS o.vuiiiiiiiiii e e e e e e e e e e e e e e e et e e et e e eanaee 215
RESIONNG @ BaACKUD c.vviiiiiiiii e e e e 215
ENCrypted Dal@hasgSccuuiiiiiiieiiieii e e et e e e e e e e e e e e 215
Creating and Accessing an Encrypted DatabhaSeoveviiiiiiiiiiiiicci e 215
S0 1c =0 I O] 1S T L= o) 1P 216

S ol 10105 Lo (= = 1 o S 216
Monitoring Database OPEratiONSciiiuuieiiiieiii et e e e e e e e e e e e e e e et e e et e e ernaaeees 216
External Statement Level MONITONNGccuuiiiiiieiiiiiii e e e e e e e e aaas 216
Internal Statement Level MONITOIINGciivniiiiieii e e e e e e eaaas 217
Internal EVENt MONITOIINGiiiteii e e e e e e e e e e e e et e e et e e et e e et e e e e eanaes 217
(oo 720 I oo I 01 G oo o 1o [P 217
Server Operation MONITOTINGiiuieiii e e e e e e e e e et e et e e aneeeenns 217

D = 072 s I = ot U Y 217
SECUNLY DEFALITS ...oveiiiii i e e e e e e e e e aaa 218
AULhentication CONEIOIiiiiii e e e e et eeaaa s 218

2 < 111 0 PP PTPPT 219
VS (= 1O o= = o] PP 219

(D = 0= s I = 1 o 221

SQL ConformanCe SEINGSuueeiruiiiiieiieeii e et e e e e e e e e e e e e e et e e et e e eaaeeean e eatnaeannnas 224
Cache, Persistence and FileS SEtiNGScvvviiiiiiiii e e 232
AULhENTICAION SELINGS ..vuiieiiiii i e e e e e e e e e et e e et e e et eeaaeaannaees 236

12. Compatibility With Other DBIMS ..ot e et e e et e e e eae s 238
CompatiDIlity OVEIVIEIW ...eeiiiii e e e e e e e e e e et e et e e et e e e eeaans 238
PostgreSQL ComMPatibilitycovuiiiiiei e 238
MySQL ComPatibilityoiiiiiiii e e 239
Firebird CompatibDilitycoouiiiiiii e e 241

Vii

HyperS@L HyperSQL User Guide

Apache Derby CompatibDilityc.oiiiiiiii e 241
Oracle Compatibilityooiii e 241

[252 @001 o 7= 11 011 11 242

MS SQL Server and Sybase Compatibilitycooiviiiiiiiii 242

G o 0707 1= 243
L0010 1< o1 T U PSP 243
Variables 1IN ConNECION URL oiiiiiiiiiiii et e e e e et e e et e e e e ae s 244
Properties for Individual CONNECLIONScouuiiiiiiiii e e e e e e e eaaas 244
Properties for the Dat@hasecccuiiiiiiiiii e 247
SQL ConformancCe PrOPETIESc.uuiiiieiiiiie et e e e e e e e e e e e et e e et eean s 248
Database Operations PrOPEITIEScciuuiiiiii i et e e e e e e e e e e e ean s 252
Database File and Memory PropertieSciiiiiiiiiiieiie et e e e e e 253
(O o 0 0= 1 11 259

Y S (= L e (0] 0= (1= 260
14. HyperSQL Network LISLENEIS (SEIVEIS) ...civvuiiiiieiiiietie ettt et e et e e e e e e e e e e e e e e et e et e e aaneeeaas 261
IS = 0= PSP 261
HY DB S GBIV ottt 261
HYPErSOQL HT TP SOIVEr ittt e ettt e et e e e et e e e eabneeeestnaeeeenes 261
HYPErSQL HTTP SEIVIEL ooeuniiiiii et e e e e e eaanns 262
Server and WeD SErver PrOPErtiEScc.uiiiiiiiiiii et e e e e e e e e e 262
Starting a Server from your APPIICAIONiiiiiiii e e e e e e e 264
Shutting down a Server from your APPIICAIONcoiuiiiiii e e 264
Allowing a Connection to Open or Create aDatabaseovevviiiiiiiiiiieiie e 264
Specifying Database Properties at SErver Startooeviiiiiiiiii e 265
B IS 0 Y/ o PN 265
S (U= 1= 1 £ PP 265
Encrypting your JDBC CONMNECLIONiiitiiiiii e e e e e e e e e e e e e e e e e aaaas 265
MaKing a Private-Key KEYSIOr®cciuuiiiiiiiiii et e e e e e e e e e e aanas 267
Automatic Server or WebServer startup on UNIX ... 268
NEIWOTK ACCESS COMEIOI ... iiitiee ittt r e e et e e e e et e e e eeta e e e eatt e eeeettaeaaees 268
15, HYPerSQL 0N UNIX ittt e e et e e e e et e e e e ettt e e e eett e e e eett e e e eete e aeaeetnaeaenes 270
001 PP 270
TS = = o) o PP 270
Setting up Database Catalog and LIStENEroiiiniiiiiieiiie e e e e e e e e e e ees 272
ACCESSING YOUr DAADASEiiiiiiii et e e e e e e e e et e et e et e e e e e e aans 273
Create additionNal ACCOUNESiiiiii ittt e et e et e e e et e e e et a e e e st reeeanens 277
S a1 o (011 o P 277
Running Hsgldb as @ System DaEmMONoiiiiiiiiiicei e e e e e e e e e e e et e e et e e eaaees 277
Portability of hsql db NIt SCIIPE ..ovvniec e 278

INit SCIIPt SEUP PrOCEAUIE ...ueieiiiii e e e e e e e e e eaas 278
Troubleshooting the TNt SCIIPL ...coueiii e e e 282
LT =o 1 0o P 283
I D= o o)V 01= 0 10 o [284
= aaTo T YA oo B I T 2 L 284
Table MemMOry AlIOCEIIONc.uuiiiii e e e e e e e e e et e e et e eanaas 284
Result Set Memory ALTOCALONccoiuiiii e e 284
Temporary Memory Use DUriNG OPErationSc..ueevuuieiiieeiiieeiiiieeiieeeeeeeie e e e s esaneennns 285

Data Cache Memory AIOCAHONcouuiiiii i e e e e e eanas 285
Object Pool Memory ANOCAtIONccuuiiiiiiii e e 285

LOD MEMOIY USAgE ivviiiiiiiiii et e e et e e e e e e e e e e e e et e e et e e et e e et e e et e e aaneeeenas 286

TS S o T 286
Managing Database CONNECLIONSiiiiiiiiiieii e e e e e e e e e e et e e e et e e et e e aaneeeees 286
Application Development and TESHING ...c..uiiieiiiiiii e e e e e e e aens 287
Tweaking the Mode Of OPEralioNoiiiiiiiiiiie e e e e e e e e et e e et e e eanees 288

HyperS@L HyperSQL User Guide

Embedded Databases in Desktop APPlICALIONSoovuiiiiiiiiie e 288

Embedded Databases in Server AppliCationSoovviiiiiiiieiii e 288

Mixed Mode : Embedding a HyperSQL Server (LIStENEr)covviviiiieiiiieiiiieeiieeee e e 288

Using HyperSQL Without Logging Data Changeccccuuieiiiiiiiiiieiii e e 289

Bulk Inserts, Updates and DEIEIEScccvuiiiiiieiii e e e s 289

USING NIO FIlE ACCESS .iviuiiiii et ettt e e et e e e e e e e e e e e et e e et e et 289

SEIVEN DABDASES ..vuiiiiitii et e e e e et a et e e e e aaae 290

UpPGrading Dat@haSESccuuiiiiiiiii e et e e e e raa 290
Upgrading From Older VEISIONScouuiiiiiieiiii e e e e e e e e e e e e et e e e e ean s 290

Manual Changes to the *.SCript Fileoiiiiii e 291

Backward Compatibility ISSUESiiiuiiiiiiiiiii e e e e e e e e e e et e e et e e e e anaees 292
HyperSQL Dependency Settings for APPlICAIONSccovuieiiiiiiii e 293
What VErsion 10 PUIL ..o 293

Using the HyperSQL Snapshot REPOSITONYcivuniiiiiiiiiiceie e e e e e e e e e e e e ana s 293

LR 010 =A< £ o] a1 o [295

y N I E =30 =0 (oL P 297
List of SQL Standard KEYWOITSuiiiiiiiiiiieiiiieeiee e e e et e e e e e e e e e e e e e st e e e e eaneeaen 297

List of SQL Keywords Disallowed as HyperSQL [dentifiersccooveviiiiiiiiiiiniiii e, 298
Special FUNCHON KEYWOITScouiiiiiiiii e e e e e e e e e e e e et e et e e e e e eanas 299

B. BUIlAING HYPErSOL JArS ...uuiiiiiieiiiieii et e et e et e e e e e et e e e e e et e e et e et e e et s e et e eaa e eatneeeanaaetnnees 300
001 PP 300
BUIlAiNg With Gradleooiiiiii e e e e e e e 300
Invoking a Gradle Build GraphiCallycccouiiiiiiiiiiii e 300

Invoking a Gradle Build from the Command Linec.ccuoiiiiiiiiiiiiiiii e e, 303

L0 LS T 0T =" | = S 304

BUITAING WIth ANt e e e e e e e e e e et e et e et e e et e eaanaas 306

1@ o] =1 o T To 7Y o | S PPN 306

Building Hsgldb With ANt ..o e e 306

BUIlding fOr OlAEr JDKS ...uiiiiiiii e et e e e e e e e et e et e e e e e et 307

Building With IDE COMPILEIS ..ouuiiiiiiieii e e e e e et e e et e e et eeaaeeaanaees 307
HSOIAD COUESWITCNEr .. .eeiiie i e e e e e e e e e e e e aaas 308
BUilding DOCUMENLEEIONuuiiiiiieiit i eiie e e e e e e e e e e e et e e et e e et e e et e e st e e st e estn e e st e eeanaerannaees 309

C. HyperSQL With OpenOfiCE ...ciuiiiiiiieiii e e e e e et e et e e e e e e eeaens 311
HyperSQL With OpenOffiCe ...uuiiii i e e e e e e e eees 311
Using OpenOffice / LibreOffice as a Datahase TOOlccuviiiiiiiiiiiiiiii e 311
Converting .odb files to use with HyperSQL SEIVEroiiiiiiiiiiiii e 311

(D o 1Y o 1= £SO I | o IR P 312
1S I [o 1= PP 314
€T oTc = I g o PPN 320

HyperS@L

List of Tables

1. Available formats of thiS AOCUMENTuiiiiiiiie e Xiii
10.1. TO_CHAR, TO_DATE and TO_TIMESTAMP format elementsccoevuiiiiiiiiinieiiiiinieeeiieeeenen 202
13.1. Memory Dat@hase URLoiiiiieiii et ettt e 243
13.2. File DAEDASE URL ...ttt ettt e ettt e et e e et e e et e e e e e aee 243
13.3. ReSOUICE Datahase URLuiiiiiiieiiee ettt ettt et e e enaaas 243
13.4. Server Database URLoouuiiiiiiiiiei ettt ettt ettt aaaas 244
13.5. USEr @N0 PASSWOITiieeiiiee ettt ettt ettt ettt et e et et r et e et e e e et e e e e e e eaan s 245
13.6. Closing old ResultSet when Statement iS reUSEAuuiiiiiiiiieiiii e 245
13.7. Column Names in IDBC RESUITSELcoouuiieiiiiiii e 245
13.8. Empty batch in IDBC PreparedStatementc.uuieeeriiieiiiie et e e e 246
13.9. Creating NEW Datahasecocuuuiiiiiiie ettt ettt e e e s 246
13.10. AULOMELIC SHULAOWN ...t ettt e et e e et e e e e et e e e e et e eeeetanaeeees 246
13.11. Validity CheCK PrOPEITY ..ooveieiiiiii ettt et e et ettt e ettt e e et et e e e e et e e e eeanaeeeee 247
13.12. SQL Keyword Use as [ENtifIEriiiiiiiiiii et 248
13.13. SQL Keyword Starting with the Underscore or Containing Dollar Charactersccoooveivieveeennnnne. 248
13.14. Reference to COIUMNS NBIMESiiiiii ittt ettt e et e e e e e e era s 248
13.15. StriNG SIZ€ DECIAIAHONcieiiieeeeet ettt e et e e e eb s 248
13.16. Type Enforcement in Comparison and ASSIGNMENTcoouuuieiiiiiieeeii e e e e e e eeei e eeens 248
13.17. Foreign Key Triggered Data Changeooooiiiiioiiiiieeiiii ettt e et e e 249
13.18. Use Of LOB fOr LONGVAR TYPES ..iiitiieiiiii ettt ettt ettt ettt e e et e e et e e e e et e e e enaa e aeenes 249
13.19. Type of string literalsin CASE WHEN ...ttt eaenns 249
13.20. Concatenation With NULLuniiiii et et e e e e e e et e e e s 249
13.21. NULL in Multi-Column UNIQUE CONSIFAINESoveuneiiieietiieeiiaeeii e et eeieaeii e e e et e aeeneeeanaaees 250
13.22. Truncation or Rounding in TYPE CONVEISIONuuueiiiiieiiiie ettt et e e e b 250
13.23. Decimal Scale of Division and AV G VEIUESooiiiiiiiiiiiiieeei et 250
13.24. SUPPOIT FOr NBN VAIUES ...ttt e e e e e e e b s 250
13.25. SOrt order Of NULL VBIUEScceeitiiiiiiii ettt ettt e e ettt e e et e e e e et e e e ena e eeees 250
13.26. Sort order of NULL values With DESCccoiiiiiiiiiiiee e 251
13.27. String comparison With PaOiNGcouuuiiiiiiii e 251
13.28. Case Insensitive Varchar COIUMNSoouuuiiiiiii et e e e ettt e e et e e e eri e eees 251
13.29. Storage Of Live JaVa OBJECESuuiiiiiii et 251
13.30. DB2 SEYI@ SYNLAX ..eeeetieeeiiii e ettt ettt ettt ettt ettt e e et e et e e e et e e e e e e e eeba e eee 251
13.31. MSSQL SEYIE SYNEAX ...eeeeiiieeeeti ettt et ettt ettt et e e et e et et e et e e e e e erb e e eenaas 252
13.32. MYSQL SEYIE SYNEBX .eertieeeiitiie ettt ettt ettt ettt et e et e e et et e e e e e e et e bt a et e ab e e e 252
13.33. OFaCle SIYIE SYNLAX ...ceeeeiieieii ettt ettt e e et et et e e e e e s 252
13.34. POStOreSQL SEYIE SYNLAXcieeeieieiii ettt ettt et e et e b 252
13.35. DEfAUIT TADIE TYPE .eetiieeiiit ettt ettt e e ettt e et et e e e e ettt e e e et e e e eetaaeeee 252
13.36. Transaction CONIOl IMOOEuuiiiiiii et e e e e e e e aaan s 253
13.37. Default 150lation LEVEl FOr SESSIONSccovuiiiiiiiiieiiiii et et e e e et e e eeaa e eees 253
13.38. Transaction RoIIback in DEAAIOCKcoiuuiiiiiii e 253
13.39. Time Zone and INTEIVaAl TYPES ...ovuuiiiiiiii ettt ettt ettt e et e e e e e e eena e eenees 253
13.40. Opening Datahase as R0 ONIYcoeuiiiiiiii e e e e eaaens 253
13.41. Opening Database Without Modifying the FIleScoooiiiiiiiii e 254
13.42. Huge database files and taleSoiiiiiiiii 254
1343, EVENE LOGUING . eettnetiiti ettt e ettt ettt e ettt e e et e e et b e e et et e e et et e e et et e e et et e e et et e e e e era s 254
S S @ I oo o] oo PP PR PPPPPR 254
13.45. Temporary ReSUIt ROWS iN IMEIMONY ...oouuiiiiiiiieee ettt et e et e e e e e e eeees 255
13.46. ROWS CaChed [N IMEIMONY ...oui ittt e et e et et e e eet e e e e eaaaeeeees 255
13.47. ROWS CaChed [N IMEIMONY ...oei ittt ettt e e et e et e e e et e e e eeaaaeeeees 255
13.48. Size of ROWS CaChed iN MEMOMYiiiiiiiiiiii et e et e e e e e e ere e eeees 255
13.49. Size Scale Of Disk Table SIOTgEoieeieiiieiiii ettt e e e e e 256

HyperS@L HyperSQL User Guide

13.50. SiZe SCAlE Of LOB SIOTAQE ..vvuiiviuiiiiiiiiii ettt e et e et e et e e e e et e e e e e s e e et e e e at e e e et e e et e e rtn e eaneeanns 256
13.51. Compression of BLOB and CLOB dalAovvvuieiiieeiiieiiiieeiee et ieeaie et e eeise s e s e eaineesaneesnns 256
13.52. Internal Backup Of Database FilESocvuuiiiiiiii e e e 256
13.53. USE Of LOCK FIlE ittt ettt et et r e et e e e e et e e e eaba e aeeennns 256
13.54. Logging Data Change SEateMENESiciiuiiiiiiiiiii e e e e e e e e e e et e e et e e et e et e eaneees 257
13.55. Automatic ChecKpoinNt FIEOUENCYouuiiiiiiieii e e et e e e e e e e e e e e e et e e et e e eanaaees 257
13.56. Automatic Defrag at ChECKPOINTiiii i e e e e e e e e et e e et e e eaneeees 257
13.57. Compression Of the .SCIIPL fIlEiiueii e e s 257
13.58. Logging Data Change StatementS FIEQUENCYcvuuuiirnieiiieiiieeie e e e e e e e e s e e e e e e e et eeaneeeanaes 257
13.59. Logging Data Change StatementS FIEQUENCYcvuuuiiiunieiiieiiiieeie e e e e et e e e e e e e e e e et eeaneeeenaes 258
13.60. Use of NIO for Disk Tahle SEOTAgEuuieiiniiiiiieiiie et e e e e e e e e e e e an s 258
13.61. Use of NIO for Disk Table SEOTAgEuuieerniiiiiieiiie et e e e e e e e e e e anas 258
13.62. RECOVENY LOQ PrOCESSING ..vuuiiiniiiiiieiiie i e et e et e e e e e e e e e e e e e et e e et e e et e e at e e et e e st e eraneeannaees 258
13.63. Default Properties for TEXT TablESiiiuniiii e r e e e e aaas 258
13.64. Forcing Garbage COllECHIONiiiiiiii e e e e e e e e e eaa s 259
13.65. Crypt Property FOr LOBSuiiiiiiiiiie e e e e ens 259
13.66. Cipher Key for ENCrypted Databaseccceuiiiiiiiiiiieii e e e e e e e e e e e e e e e eees 259
13.67. Crypt Provider Encrypted Datahasec.uveiiiiiiiiiiiii e 259
13.68. Cipher Specification for Encrypted Databasecoceuiiiiiiiiiiiiiiie e e 259
JCT 1o T oo (o 10T T =10 1=.11 o PN 260
G (O = B I o = PP 260
TN = V= T o PP 260
14.1. common server and WEDSEIVEr PIrOPEITIESc.u.iiiiieiiii ean s 262
A = a1 oo o= 1= 263
R /= 1S Y= gl o (0] 0= o (== P 263

Xi

HyperS@L

List of Examples

1.1. Java code to connect to the 10Cal NSOl SEIVErooui i e 5
1.2. Java code to connect to the 10Cal NP SEIVErooueiiiii e 5
1.3. Java code to connect to the local secure SSL hsgl and http SErVErSoeiiiiiiiieii e 6
1.4. specifying a connection property to shutdown the database when the last connection isclosed 7
1.5. specifying a connection property to disallow creating a new databaseccooveiiiiiiieiiiiiincc e, 8
3.1, User-defined Session VariahleSooiiiiieiii e 34
3.2. User-defined Temporary Session TahIESuiiiiiiiiiii et e 34
3.3. Setting TransaCtion CharaCteriStICSuuuueieiii ettt ettt ettt n e e e re e e enaens 40
34 LOCKING TADIES ...ttt e et et ettt ettt e et e e e e et e e e en e aae 41
35, ROIDACK ... e 42
3.6. Setting SESSION CharaCleiSlICSueiiitii ettt ettt e ettt e et e e e e ebe e e e eeneaeeees 42
3.7. Setting SESSION AULNOMIZALONcieiii ettt e et e e et e e e e ebe e eeees 43
3.8. SELtiNGg SESSION TIME ZONE ..uiieeiitie ettt ettt ettt e et e et e e e e et e e et et a e et et e e e e et naeeera s 43
4.1. inserting the next sequence value into @table rOWc.uuiiiiiiii i 49
4.2. numbering returned rows of a SELECT in sequential ordercoouiiiiiiiiiiiiiiiiiieei e 50
4.3. using the ast ValUe Of @ SEOUENCEceeiiiiiiiii ettt ettt et e e e e e b s 50
4.4. Column values which satisfy a 2-column UNIQUE CONSLraintc..ovieiiiiiniiiiiiiieeeiiieeecee e 53
11.1. Using CACHED tables for the LOB SCREMAuiiiiiiiieiiiii et 212
11.2. Displaying DBBECKUD SYNEEX uiieiiieieii ettt e et e e e e 214
11.3. Offline Backup EXAMPIEei ettt et e s 215
11.4. Listing a Backup With DDBACKUDccuuuiiiiiieieii ettt et et e e e e e e eeeens 215
11.5. Restoring a Backup With DBBaCKUDcieiiiiiiii e 215
11.6. SQL LOG EXAMPIE ..ottt ettt e e et et aaaas 222
11.7. Finding foreign key rows with no parents after a bulk importoooeiiiiiiiiiii e, 232
14.1. Exporting certificate from the SErver's KEYSIOrei oo 266
14.2. Adding a certificate to the Client KEYSIOrecoouuiiiiiii e 266
14.3. Specifying your own trust store to @ JDBC CHENtcoouviiiiiiiiieiie e 266
14.4. Getting a pem-style private key into 8 JIKS KEYSIOIEiiiiiiiiiiiiiie e 267
14.5. Validating and Testing @an ACL fill@ ... 269
15.1. eXxample SOItO0I.FC STANZAcceeriieiiii ettt et 279
16.1. Using CACHED tables for the LOB SCREMAuiiiiiiiieiiiii et 286
16.2. MaNINVOKEr EXAMPIE ...ouiiiiii ettt ettt e et e et et e e e et e e e e e eees 288
16.3. HyperSQL Snapshot Repository DefiNitionco.uiiiiiiiiiiiiiiie e e 294
16.4. Sample Snapshot VY DEPENUENCYceeeiiieiiiii ettt et e et e e et e e eete e eeeee 294
16.5. Sample Snapshot Maven DEPENAENCYoiiieuiiiiiii e e e e enaens 294
16.6. Sample Snapshot Gradle DEPENTENCYccuvuieiiiiee et 294
16.7. Sample Snapshot ivy.xml loaded by Ivyxml pluginoooiiiiiii e 295
16.8. Sample Snapshot Groovy DependenCy, USING GraPEocceeruuieeriineeeiiie e et e et e e e e e e 295
16.9. Sample RaNGE 1VY DEPENUEINCY vuuiiiiiii ettt e e et e e et e e e et e e e eeaa e eeeees 295
16.10. Sample Range Maven DEPENUENCY uuiiiiiiiieeeeii ettt et e e e e e e e e e e eneans 295
16.11. Sample Range Gradle DEPENAENCYoeiiiriieiiiii ettt e e s 295
16.12. Sample Range ivy.xml loaded by IvyxXml plUGINoiiiiiii e 296
16.13. Sample Range Groovy Dependency, USING GrapEoocieriuieeiiiiieeeiiia e et e et e e 296
B.1. Buiding the standard Hsgldb jar file With ANt ... 307
B.2. Example source code before CodeSWItCher IS TUNcooiuiiiiiiii e 308
B.3. CodeSwitcher command 1iNe INVOCEIIONiiiiuineeiiiie et 308
B.4. Source code after COOeSWItChEr PrOCESSINGciieriieiiiii ettt 308

Xii

HyperS@L

Preface

HyperSQL DataBase (HSQLDB) is a modern relational database manager that conforms closely to the SQL:2011
Standard and JDBC 4 specifications. It supports all core features and many of the optional features of SQL:2008.

The first versions of HSQLDB were released in 2001. Version 2, first released in 2010, includes a complete rewrite
of most parts of the database engine.

This documentation covers HyperSQL version 2.3.4. This documentation is regularly improved and updated. The
latest, updated version can be found at http://hsgldb.org/doc/2.0/

If you notice any mistakes in this document, or if you have problems with the procedures themselves, please use the
HSQL DB support facilities which are listed at http://hsgldb.org/support

Available formats for this document

This document is available in severa formats.

Y ou may be reading this document right now at http://hsgldb.org/doc/2.0, or in adistribution somewhere else. | hereby
call the document distribution from which you are reading this, your current distro.

http://hsgldb.org/doc/2.0 hosts the latest production versions of all available formats. If you want a different format of
the same version of the document you are reading now, then you should try your current distro. If you want the latest
production version, you should try http://hsgldb.org/doc/2.0.

Sometimes, distributions other than http://hsgldb.org/doc/2.0 do not host all available formats. So, if you can't access
the format that you want in your current distro, you have no choice but to use the newest production version at http://
hsgldb.org/doc/2.0.

Table 1. Available for mats of this document

format your distro at http://hsgldb.org/doc/2.0

Chunked HTML index.html http://hsgldb.org/doc/2.0/guide/
All-in-oneHTML | guide.html http://hsgldb.org/doc/2.0/guide/guide.html
PDF guide.pdf http://hsgldb.org/doc/2.0/guide/guide.pdf

If you are reading this document now with a standalone PDF reader, the your distro links may not work.

Xiii

index.html
http://hsqldb.org/doc/2.0/guide/
guide.html
http://hsqldb.org/doc/2.0/guide/guide.html
http://hsqldb.org/doc/2.0/guide/guide.pdf

HyperS@L

Chapter 1. Running and Using HyperSQL

Fred Toussi, The HSQL Development Group
$Revision: 5581 $

Copyright 2002-2016 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2016-05-15 15:57:21-0400

Introduction

HyperSQL Database (HSQLDB) isamodern relational database system. Version 2.3 isthelatest rel ease of the all-new
version 2 code. Written from ground up to follow the international 1SO SQL:2011 standard, it supports the complete
set of the classic features, together with optional features such as stored procedures and triggers.

HyperSQL isused for development, testing and deployment of database applications.

Standard compliance is the most unique characteristic of HyperSQL. There are severa other distinctive features.
HyperSQL can provide database access within the user's application process, within an application server, or as a
separate server process. HyperSQL can run entirely in memory using dedicated fast memory structures as opposed
to ram disk. HyperSQL can use disk persistence in a flexible way, with reliable crash-recovery. HyperSQL is the
only open-source relational database management system with a high performance dedicated lob storage system,
suitable for gigabytes of lob data. It is also the only relational database that can create and access large comma
delimited files as SQL tables. HyperSQL supports three live switchable transaction control models, including fully
multi threaded MV CC, and is suitable for high performance transaction processing applications. HyperSQL is also
suitable for businessintelligence, ETL and other applications that process large data sets. HyperSQL has awide range
of enterprise deployment options, such as XA transactions, connection pooling data sources and remote authentication.

New SQL syntax compatibility modes have been added to HyperSQL. These modes allow a high degree of
compatibility with several other database systems which use non-standard SQL syntax.

HyperSQL is written in the Java programming language and runs in a Java virtual machine (JVM). It supports the
JDBC interface for database access.

An ODBC driver is aso available as a separate download.
This guide covers the database engine features, SQL syntax and different modes of operation. The Server,

JDBC interfaces, pooling and XA components are documented in the JavaDoc. Utilities such as SglTool and
DatabaseM anager are covered in a separate Utilities Guide.

The HSQLDB Jar

The HSQLDB jar package, hsgldb.jar, is located in the /lib directory of the ZIP package and contains several
components and programs.

Components of the Hsgldb jar package
* HyperSQL RDBMS Engine (HSQLDB)

» HyperSQL JDBC Driver

HyperS@L Running and Using HyperSQL

 Database Manager (GUI database access tool, with Swing and AWT versions)

The HyperSQL RDBMS and JDBC Driver provide the core functionality. DatabaseManagers are general-purpose
database access tools that can be used with any database engine that has a JDBC driver.

Anadditional jar, sgltool .jar, contains Sgl Tool, command line database accesstool. Thisisageneral purpose command
line database access tool that can be ued with other database engines as well.

Running Database Access Tools

The tools are used for interactive user access to databases, including creation of a database, inserting or modifying
data, or querying the database. All tools are run in the normal way for Java programs. In the following example the
Swing version of the Database Manager is executed. Thehsql db. j ar islocated in thedirectory . . / | i b relative
to the current directory.

‘ java -cp ../lib/hsqgldb.jar org.hsqgldb.util.DatabaseManager Swi ng

If hsgl db. j ar isinthe current directory, the command would change to:

‘ java -cp hsqldb.jar org. hsqgldb.util.DatabaseManager Swi ng

Main classesfor the Hsgldb tools
» org. hsqgl db. util . Dat abaseManager
* org. hsqgl db. util . Dat abaseManager Swi ng

When atool is up and running, you can connect to a database (may be a new database) and use SQL commands to
access and modify the data.

Tools can use command line arguments. You can add the command line argument --help to get a list of available
arguments for these tools.

Double clicking the HSQLDB jar will start the DatabaseM anagerSwing application.

A HyperSQL Database

Each HyperSQL database is called a catalog. There are three types of catalog depending on how the data is stored.

Types of catalog data

» mem: stored entirely in RAM - without any persistence beyond the VM processs life
« file: stored in filesystem files

* res: stored in aJavaresource, such asaJar and always read-only

All-in-memory, mem: catal ogs can be used for test data or as sophisticated caches for an application. These databases
do not have any files.

A file: catalog consists of between 2 to 6 files, all named the same but with different extensions, located in the same
directory. For example, the database named "test" consists of the following files:

e test.properties

e test.script

HyperS@L Running and Using HyperSQL

e test.log

* test.data

* test. backup
» test.lobs

The propertiesfile contains afew settings about the database. The script file contains the definition of tables and other
database objects, plus the data for non-cached tables. The log file contains recent changes to the database. The data
file contains the data for cached tables and the backup file is a compressed backup of the last known consistent state
of the data file. All these files are essential and should never be deleted. For some catalogs, the t est . dat a and
t est . backup fileswill not be present. In addition to those files, a HyperSQL database may link to any formatted
text files, such as CSV lists, anywhere on the disk.

While the "test" catalog is open, at est . | og fileis used to write the changes made to data. Thisfileis removed at
anormal SHUTDOWN. Otherwise (with abnormal shutdown) thisfileis used at the next startup to redo the changes.
Atest. | ck fileisaso usedtorecord the fact that the databaseis open. Thisis deleted at anormal SHUTDOWN.

Note

When the engine closes the database at a shutdown, it creates temporary files with the extension . new
which it then renames to those listed above. These files should not be deleted by the user. At the time of
the next startup, all such fileswill be renamed or deleted by the database engine. In some circumstances,
at est . dat a. xxx. ol d iscreated and deleted afterwards by the database engine. The user can delete
theset est . dat a. xxx. ol d files.

A res: catalog consists of the files for a small, read-only database that can be stored inside a Java resource such as a
ZIP or JAR archive and distributed as part of a Java application program.

In-Process Access to Database Catalogs

In general, JIDBC is used for all access to databases. This is done by making a connection to the database, then using
various methods of thej ava. sql . Connect i on object that is returned to access the data. Accessto an in-process
database is started from JDBC, with the database path specified in the connection URL. For example, if the file:
database nameis "testdb" and itsfiles are located in the same directory aswhere the command to run your application
was issued, the following code is used for the connection:

‘ Connection c¢ = DriverManager. get Connection("jdbc: hsgl db: file:testdb", "SA", ""); ‘

The database file path format can be specified using forward slashes in Windows hosts as well as Linux hosts. So
relative paths or paths that refer to the same directory on the same drive can be identical. For exampleif your database
directoryinLinuxis/ opt / db/ cont ai ni ng a dat abase testdb (with fil es naned testdb. *),
then the database file path is /opt/db/testdb. Ifyoucreate anidentical directory structure on
the C. drive of a Windows host, you can use the same URL in both Windows and Linux:

‘ Connection c¢ = DriverManager. get Connecti on("jdbc: hsql db:file:/opt/db/testdb", "SA", ""); ‘

When using relative paths, these paths will be taken relative to the directory in which the shell command to start the
Java Virtual Machine was executed. Refer to the Javadoc for JDBCConnecti on for more details.

Paths and database names for file databases are treated as case-sensitive when the database is created or the first
connection is made to the database. But if a second connection is made to an open database, using a path and name
that differs only in case, then the connection is made to the existing open database. This measure is necessary because
in Windows the two paths are equivalent.

HyperS@L Running and Using HyperSQL

A mem: database is specified by the mem: protocol. For mem: databases, the path is simply a name. Severa mem:
databases can exist at the same time and distinguished by their names. In the example below, the database is called
"mymemdb";

‘ Connection c¢ = DriverManager. get Connecti on("jdbc: hsqgl db: nem nynenmdb”, "SA", ""); ‘

A res: database, is specified by theres: protocol. AsitisaJavaresource, the database path isaJavaURL (similar to the
path to aclass). In the example below, "resdb” isthe root name of the database files, which existsin the directory "org/
my/path" within the classpath (probably inaJar). A Javaresourceisstored in acompressed format and is decompressed
in memory when it is used. For this reason, ares. database should not contain large amounts of data and is always
read-only.

‘ Connection c = DriverManager. get Connecti on("jdbc: hsqgl db: res: org. ny. pat h. resdb", "SA", ""); ‘

Thefirst timein-process connection is made to adatabase, some general data structures areinitialised and afew helper
threads are started. After this, creation of connections and callsto JDBC methods of the connections execute asif they
are part of the Java application that is making the calls. When the SQL command "SHUTDOWN" is executed, the
global structures and helper threads for the database are destroyed.

Note that only one Java process at a time can make in-process connections to a given file: database. However, if the
file: database has been made read-only, or if connections are made to ares: database, then it is possible to make in-
process connections from multiple Java processes.

Server Modes

For most applications, in-process access is faster, as the data is not converted and sent over the network. The main
drawback is that it is not possible by default to connect to the database from outside your application. As a result
you cannot check the contents of the database with external tools such as Database Manager while your application
isrunning.

Server modes provide the maximum accessibility. The database engine runs in a VM and opens one or more in-
process catalogs. It listens for connections from programs on the same computer or other computers on the network.
It translates these connections into in-process connections to the databases.

Several different programs can connect to the server and retrieve or updateinformation. Applications programs (clients)
connect to the server using the HyperSQL JDBC driver. In most server modes, the server can servean unlimited number
of databases that are specified at the time of running the server, or optionally, as a connection request is received.

A Sever mode is also the preferred mode of running the database during development. It allows you to query the
database from a separate database access utility while your application is running.

There are three server modes, based on the protocol used for communications between the client and server. They are
briefly discussed below. More details on serversis provided in the HyperSQL Network Listeners (Servers) chapter.

HyperSQL HSQL Server

Thisis the preferred way of running a database server and the fastest one. A proprietary communications protocol is
used for this mode. A command similar to those used for running tools and described above is used for running the
server. Thefollowing example of the command for starting the server startsthe server with one (default) database with
files named "mydb.*" and the public name of "xdb". The public name hides the file names from users.

‘ java -cp ../lib/hsqgldb.jar org.hsqgl db. server. Server --database.0 file:nydb --dbnane.0 xdb ‘

The command line argument - - hel p can be used to get alist of available arguments.

HyperS@L Running and Using HyperSQL

HyperSQL HTTP Server

This method of access is used when the computer hosting the database server is restricted to the HTTP protocol. The
only reason for using this method of accessis restrictions imposed by firewalls on the client or server machines and it
should not be used wherethere are no such restrictions. The HyperSQL HTTP Server isaspecial web server that allows
JDBC clientsto connect viaHTTP. The server can also act as a small general-purpose web server for static pages.

Torunan HTTP server, replace the main class for the server in the example command line above with the following:

‘ org. hsqgl db. server. WbSer ver

The command line argument - - hel p can be used to get alist of available arguments.

HyperSQL HTTP Servlet

This method of access also uses the HTTP protocol. It is used when a separate servlet engine (or application server)
such as Tomcat or Resin provides access to the database. The Servliet Mode cannot be started independently from the
servlet engine. The Ser vl et class, in the HSQLDB jar, should be installed on the application server to provide the
connection. The database file path is specified using an application server property. Refer to the sourcefile src/
or g/ hsql db/ server/ Servl et.java toseethedetails.

Both HTTP Server and Servlet modes can be accessed using the JDBC driver at the client end. They do not provide
aweb front end to the database. The Servlet mode can serve multiple databases.

Please note that you do not normally use this mode if you are using the database engine in an application server. In
this situation, connections to a catalog are usually made in-process, or using a separate Server

Connecting to a Database Server

When a HyperSQL server is running, client programs can connect to it using the HSQLDB JDBC Driver contained
in hsqgl db. j ar. Full information on how to connect to a server is provided in the Java Documentation for
JDBCConnecti on (located inthe/ doc/ api docs directory of HSQLDB distribution). A common example is
connection to the default port (9001) used for the hsgl: protocol on the same machine:

Example 1.1. Java code to connect to the local hsgl Server

try {
Cl ass. forNane("org. hsqgl db. j dbc. JDBCDri ver");
} catch (Exception e) {
Systemerr.println("ERROR failed to | oad HSQLDB JDBC driver.");
e.printStackTrace();
return;

}

Connection ¢ = DriverManager. get Connecti on("jdbc: hsql db: hsql : //1 ocal host/ xdb", "SA", "");

If the HyperSQL HTTP server is used, the protocol is http: and the URL will be different:

Example 1.2. Java code to connect to thelocal http Server

‘ Connection ¢ = DriverManager. get Connecti on("jdbc: hsqgl db: http://1 ocal host/xdb", "SA", ""); ‘

Note in the above connection URL, there is no mention of the database file, as this was specified when running the
server. Instead, the public name defined for dbname.O is used. Also, see the HyperSQL Network Listeners (Servers)
chapter for the connection URL when there is more than one database per server instance.

HyperS@L Running and Using HyperSQL

Security Considerations

When aHyperSQL server isrun, network access should be adequately protected. Source | P addresses may berestricted
by use of our Access Control List feature, network filtering software, firewall software, or standalone firewalls. Only
secure passwords should be used-- most importantly, the password for the default system user should be changed
from the default empty string. If you are purposefully providing datato the public, then the wide-open public network
connection should be used exclusively to access the public data via read-only accounts. (i.e., neither secure data nor
privileged accounts should use this connection). These considerations also apply to HyperSQL servers run with the
HTTP protocol.

HyperSQL provides two optional security mechanisms. The encrypted SSL protocol , and Access Control Lists .
Both mechanisms can be specified when running the Server or WebServer. On the client, the URL to connect to an
SSL server is dlightly different:

Example 1.3. Java code to connect to the local secure SSL hsgl and http Servers

Connection ¢
Connection ¢

Dri ver Manager . get Connecti on("j dbc: hsql db: hsql s: / /I ocal host/ xdb", "SA", "");
Dri ver Manager . get Connecti on("j dbc: hsql db: https://I ocal host/xdb", "SA", "");

The security features are discussed in detail in the HyperSQL Network Listeners (Servers) chapter.

Using Multiple Databases

A server can provide connections to more than one database. In the examples above, more than one set of database
names can be specified on the command line. It is also possible to specify all the databasesina. pr operti es filg,
instead of the command line. These capabilities are covered in the HyperSQL Network Listeners (Servers) chapter

Accessing the Data

As shown so far, aj ava. sql . Connect i on object is always used to access the database. But the speed and
performance depends on the type of connection.

Establishing aconnection and closing it has some overheads, thereforeit is not good practiceto create anew connection
to perform a small number of operations. A connection should be reused as much as possible and closed only when
it is not going to be used again for along while.

Reuse is more important for server connections. A server connection uses a TCP port for communications. Each time
a connection is made, a port is allocated by the operating system and deallocated after the connection is closed. If
many connections are made from a single client, the operating system may not be able to keep up and may refuse
the connection attempt.

Ajava. sql . Connect i on object has some methods that return further j ava. sql . * objects. All these objects
belong to the connection that returned them and are closed when the connection is closed. These objects can be reused,
but if they are not needed after performing the operations, they should be closed.

Aj ava. sql . Dat abaseMet aDat a object is used to get metadata for the database.

A java.sql.Statenent object is used to execute queries and data change statements. A
j ava. sgl . St at ement can be reused to execute a different statement each time.

A java. sgl . Prepar edSt at enent object is used to execute a single statement repeatedly. The SQL
statement usually contains parameters, which can be set to new values before each reuse. When a
j ava. sql . Prepar edSt at ement object is created, the engine keeps the compiled SQL statement for
reuse, until the java. sql. PreparedStatenent object is closed. As a result, repeated use of a
j ava. sql . Prepar edSt at ement ismuch faster thanusing aj ava. sql . St at enent object.

HyperS@L Running and Using HyperSQL

A java.sql.Call abl eSt at enent object is used to execute an SQL CALL statement. The SQL
CALL statement may contain parameters, which should be set to new values before each reuse. Similar
to j ava. sql . Prepar edSt at enent, the engine keeps the compiled SQL statement for reuse, until the
j ava. sgl . Cal | abl eSt at enent object isclosed.

Ajava. sqgl . Connect i on object also has some methods for transaction control.
Theconmi t () method performsaCOVM T whilether ol | back() method performsaROLLBACK SQL statement.

The set Savepoi nt (String nane) method performs a SAVEPO NT <nane> SQL statement and returns
aj ava. sql . Savepoi nt object. Ther ol | back(Savepoi nt nane) method performs a ROLLBACK TO
SAVEPO NT <nane> SQL statement.

TheJavadocfor JDBCConnection , JDBCDriver , JDBCDatabaseMetadata JDBCResult Set
, JDBCSt at enent JDBCPr epar edSt at enent list all the supported JDBC methods together with
information that is specific to HSQLDB.

Closing the Database

All databases running in different modes can be closed with the SHUTDOWN command, issued asan SQL statement.

When SHUTDOWN is issued, all active transactions are rolled back. The catalog files are then saved in a form that
can be opened quickly the next time the catalog is opened.

A specia form of closing the database is via the SHUTDOWN COMPACT command. This command rewrites the
. dat a filethat containstheinformation stored in CACHED tablesand compactsit to itsminimum size. Thiscommand
should be issued periodically, especialy when lots of inserts, updates or deletes have been performed on the cached
tables. Changes to the structure of the database, such as dropping or modifying populated CACHED tables or indexes
also create large amounts of unused file space that can be reclaimed using this command.

Databases are not closed when the last connection to the databaseis explicitly closed viaJDBC. A connection property,
shut down=t r ue, can be specified on the first connection to the database (the connection that opens the database)
to force a shutdown when the last connection closes.

Example 1.4. specifying a connection property to shutdown the database when the last
connection isclosed

Connection ¢ = DriverManager. get Connecti on(
"jdbc: hsql db: file:/opt/db/testdb; shutdown=true", "SA", "");

Thisfeature is useful for running tests, where it may not be practical to shutdown the database after each test. But it
is not recommended for application programs.

Creating a New Database

When a server instance is started, or when a connection is made to an in-process database, a new, empty database is
created if no database exists at the given path.

With HyperSQL 2.0 the username and password that are specified for the connection are used for the new database.
Both the username and password are case-sensitive. (The exception isthe default SA user, which isnot case-sensitive).
If no username or password is specified, the default SA user and an empty password are used.

This feature has a side effect that can confuse new users. If a mistake is made in specifying the path for connecting
to an existing database, a connection is neverthel ess established to a new database. For troubleshooting purposes, you

HyperS@L Running and Using HyperSQL

can specify a connection property ifexists=t r ue to allow connection to an existing database only and avoid creating
anew database. In this case, if the database does not exist, theget Connect i on() method will throw an exception.

Example 1.5. specifying a connection property to disallow creating a new database

Connection c¢ = DriverManager. get Connecti on(
"jdbc: hsql db: file:/opt/db/testdb;ifexists=true", "SA", "");

A database has many optional properties, described in the System Management chapter. You can specify most of
these properties on the URL or in the connection properties for the first connection that creates the database. See the
Properties chapter.

HyperS@L

Chapter 2. SQL Language

Fred Toussi, The HSQL Development Group
$Revision: 5575 $

Copyright 2002-2016 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2016-05-15 15:57:21-0400

Standards Support

HyperSQL 2.x supports the dialect of SQL defined by SQL standards 92, 1999, 2003, 2008 and 2011. This means
where afeature of the standard is supported, e.g. |eft outer join, the syntax isthat specified by the standard text. Almost
all syntactic features of SQL-92 up to Advanced Level are supported, as well as SQL:2011 core and many optional
features of this standard. Work isin progress for aformal declaration of conformance.

At the time of this release, HyperSQL supports the widest range of SQL standard features among all open source
RDBMS.

Various chapters of this guide list the supported syntax. When writing or converting existing SQL DDL (Data
Definition Language), DML (DataManipulation Language) or DQL (Data Query Language) statementsfor HSQLDB,
you should consult the supported syntax and modify the statements accordingly. Some statements written for older
versions may have to be modified.

Over 300 words are reserved by the standard and should not be used as table or column names. For example, the
word POSITION isreserved asit is afunction defined by the Standardswith asimilar roleas St ri ng. i ndexOf ()
in Java. HyperSQL does not currently prevent you from using a reserved word if it does not support its use or can
distinguish it. For example CUBE is areserved words that is not currently supported by HyperSQL and is allowed as
atable or column name. Y ou should avoid using such names as future versions of HyperSQL are likely to support the
reserved words and may reject your table definitions or queries. The full list of SQL reserved wordsisin the appendix
Lists of Keywords .

There are several user-defined properties to control the strict application of the SQL Standard in different areas.
If you have to use areserved keyword as the name of a database object, you can enclose it in double quotes.

HyperSQL aso supports enhancements with keywords and expressions that are not part of the SQL standard.
Expressionssuchas SELECT TOP 5 FROM .. ,SELECT LIM T 0 10 FROM. .. orDROP TABLE nyt abl e
| F EXI STS are among such constructs.

Many print books cover SQL Standard syntax and can be consulted.

In HyperSQL version 2, all features of JDBC4 that apply to the capabilities of HSQLDB are fully supported. The
relevant JDBC classes are thoroughly documented with additional clarifications and HyperSQL specific comments.
See the JavaDoc for theor g. hsql db. j dbc. * classes.

SQL Data and Tables

Inan SQL system, all significant datais stored in tables and sequence generators. Therefore, thefirst step in creating a
databaseis defining thetablesand their columns. The SQL standard supportstemporary tables, which arefor temporary
data, and permanent base tables, which are for persistent data.

HyperS@L SQL Language

Temporary Tables

Datain TEMPORARY tablesis not saved and lasts only for the lifetime of the session. The contents of each TEMP
table is visible only from the session that is used to populate it.

HyperSQL supports two types of temporary tables.

The GLOBAL TEMPORARY typeisaschemaobject. It is created with the CREATE GLOBAL TEMPORARY TABLE
statement. The definition of the table persists, and each session has access to the table. But each session seesits own
copy of the table, which is empty at the beginning of the session.

TheLOCAL TEMPORARY typeisnot aschemaabject. Itiscreated withthe DECLARE LOCAL TEMPORARY TABLE
statement. The table definition lasts only for the duration of the session and is not persisted in the database. The table
can be declared in the middle of a transaction without committing the transaction. If a schema name is needed to
reference these tables in a given SQL statement, the pseudo schema hames MODULE or SESSI ON can be used.

When the session commits, the contents of all temporary tables are cleared by default. If the table definition statements
includes ON COMMIT PRESERVE ROWS, then the contents are kept when a commit takes place.

The rows in temporary tables are stored in memory by default. If the hsql db. resul t _max_nenory_r ows
property has been set or the SET SESSI ON RESULT MEMORY ROAS <r ow count > has been specified, tables
with row count above the setting are stored on disk.

Persistent Tables

HyperSQL supports the Standard definition of persistent base table, but defines three types according to the way the
datais stored. These are MEMORY tables, CACHED tables and TEXT tables.

Memory tables are the default type whenthe CREATE TABLE command isused. Their dataisheld entirely in memory
but any change to their structure or contents iswrittentothe*. | og and*. scri pt files. The*. scri pt fileand
the*. | og file are read the next time the database is opened, and the MEMORY tables are recreated with all their
contents. So unlike TEMPORARY tables, MEMORY tables are persistent. When the database is opened, all the data
for the memory tables is read and inserted. This process may take a long time if the database is larger than tens of
megabytes. When the database is shutdown, all the datais saved. This can also take along time.

CACHED tables are created with the CREATE CACHED TABLE command. Only part of their data or indexes is
held in memory, allowing large tables that woul d otherwise take up to several hundred megabytes of memory. Another
advantage of cached tables isthat the database engine takes less time to start up when a cached table is used for large
amounts of data. The disadvantage of cached tables is a reduction in speed. Do not use cached tables if your data
set is relatively small. In an application with some small tables and some large ones, it is better to use the default,
MEMORY mode for the small tables.

TEXT tables use a CSV (Comma Separated Value) or other delimited text file as the source of their data. You can
specify an existing CSV file, such as a dump from another database or program, as the source of a TEXT table.
Alternatively, you can specify an empty file to be filled with data by the database engine. TEXT tables are efficient in
memory usage as they cache only part of the text data and all of the indexes. The Text table data source can always
be reassigned to adifferent file if necessary. The commands are needed to set up a TEXT table asdetailed in the Text
Tables chapter.

With al-in-memory databases, both MEMORY table and CACHED table declarations are treated as declarations for
non-persistent memory tables. In the latest versions of HyperSQL, TEXT table declarations are allowed in al-in-
memory databases.

The default type of tablesresulting from future CREATE TABLE statements can be specified with the SQL command:

| SET DATABASE DEFAULT TABLE TYPE { CACHED | MEMORY }; |

10

HyperS@L SQL Language

The type of an existing table can be changed with the SQL command:

| SET TABLE <tabl e nane> TYPE { CACHED | MEMCRY };

SQL statements access different types of tables uniformly. No change to statementsis needed to access different types
of table.

Short Guide to Data Types

Most other RDBM S do not conform to the SQL Standard in all areas, but they are gradually moving towards Standard
conformance. When switching from another SQL dialect, the following should be considered:

Numeric types TINYINT, SMALLINT, INTEGER and BIGINT are types with fixed binary precision. These types
are more efficient to store and retrieve. NUMERIC and DECIMAL are types with user-defined decimal precision.
They can be used with zero scaleto store very large integers, or with anon-zero scale to store decimal fractions. The
DOUBLE typeisa®64 bit, approximate floating point types. HyperSQL even allowsyou to storeinfinity in thistype.

The BOOLEAN typeisfor logical valuesand can hold TRUE, FAL SE or UNKNOWN. Although HyperSQL alows
you to use one and zero in assignment or comparison, you should use the standard values for this type.

Character string types are CHAR(L), VARCHAR(L) and CLOB. CHAR is for fixed width strings and any string
that isassigned to thistypeis padded with spaces at the end. Do not use thistype for general storage of strings. If you
use CHAR without the length L, then it is interpreted as a single character string. Use VARCHAR(L) for general
strings. There are only memory limits and performance implications for the maximum length of VARCHAR(L).
If the strings are larger than a few kilobytes, consider using CLOB. The CLOB types is for very large strings.
Do not use this type for short strings as there are performance implications. The CLOB type is a better choice for
the storage of long strings. By default LONGVARCHAR is a synonym for along VARCHAR and can be used
without specifying the size. Y ou can set LONGVARCHAR to map to CLOB, withthesql . | ongvar _is_| ob
connection property or the SET DATABASE SQL LONGVAR IS LOB TRUE statement.

Binary string types are BINARY (L), VARBINARY (L) and BLOB. Do not use BINARY (L) unlessyou are storing
keys such as UUID. This type pads short binary strings with zero bytes. BINARY without the length L means a
singlebyte. Use VARBINARY (L) for general binary strings, and BLOB for large binary objects. Y ou should apply
the same considerations as with the character string types. By default LONGVARBINARY is a synonym for a
long VARCHAR and can be used without specifying the size. Y ou can set LONGVARBINARY to map to BLOB,
withthesql . | ongvar _i s_| ob connection property or the SET DATABASE SQL LONGVARISLOB TRUE
statement.

TheBIT(L) and BITVARYING(L) types are for bit maps. Do not use them for other types of data. BIT without the
length L argument means asingle bit and is sometimes used as alogical type. Use BOOLEAN instead of thistype.

The UUID typeisfor UUID (also called GUID) values. The value is stored as BINARY. UUID character strings,
aswell asBINARY strings, can be used to insert or to compare.

The datetime types DATE, TIME and TIMESTAMP, together with their WITH TIME ZONE variations are
available. Read the details in this chapter on how to use these types.

The INTERVAL typeisvery powerful when used together with the datetime types. Thisis very easy to use, but is
supported mainly by "big iron" database systems. Note that functionsthat add days or months to datetime values are
not really asubstitutefor the INTERVAL type. Expressionssuch as(dat ecol - 7 DAY) > CURRENT_DATE
are optimised to use indexes when it is possible, while the equivalent function calls are not optimised.

The OTHER type is for storage of Java objects. If your objects are large, serialize them in your application and
store them as BLOB in the database.

The ARRAY type supports all base types except LOB and OTHER types. ARRAY data objects are held in memory
while being processed. It is therefore not recommended to store more than about a thousand objectsin an ARRAY

11

HyperS@L SQL Language

in normal operations with disk based databases. For specialised applications, use ARRAY with as many elements
as your memory allocation can support.

HyperSQL 2.3 has several compatibility modes which alow the type names that are used by other RDBMS to be
accepted and translated into the closest SQL Standard type. For example the type TEXT, supported by MySQL and
PostgreSQL is trandated in these compatibility modes.

Data Types and Operations

HyperSQL supportsall the types defined by SQL-92, plusBOOLEAN, BINARY and L OB typesthat were |later added
to the SQL Standard. It also supports the non-standard OTHER type to store serializable Java objects.

SQL isastrongly typed language. All data stored in specific columns of tables and other objects (such as sequence
generators) have specific types. Each dataitem conformsto the type limits such as precision and scalefor the column. It
also conformsto any additional integrity constraintsthat are defined as CHECK constraintsin domainsor tables. Types
can be explicitly converted using the CAST expression, but in most expressions they are converted automatically.

Data is returned to the user (or the application program) as a result of executing SQL statements such as query
expressions or function calls. All statements are compiled prior to execution and the return type of the datais known
after compilation and before execution. Therefore, once a statement is prepared, the data type of each column of the
returned result is known, including any precision or scale property. The type does not change when the same query
that returned one row, returns many rows as aresult of adding more data to the tables.

Some SQL functions used within SQL statements are polymorphic, but the exact type of the argument and the return
valueis determined at compile time.

When a statement is prepared, using a JDBC PreparedStatement object, it is compiled by the engine and the type of
the columns of its ResultSet and / or its parameters are accessible through the methods of PreparedStatement.

Numeric Types

TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without adecimal point) are the supported
integral types. They correspond respectively to byt e, short ,i nt, | ong, Bi gDeci nal and Bi gDeci nal Java
types in the range of values that they can represent (NUMERIC and DECIMAL are equivaent). Thetype TINYINT
isan HSQLDB extension to the SQL Standard, while the others conform to the Standard definition. The SQL type
dictates the maximum and minimum values that can be held in a field of each type. For example the value range for
TINYINT is-1281to +127. Thebit precision of TINYINT, SMALLINT, INTEGER and BIGINT isrespectively 8, 16,
32 and 64. For NUMERIC and DECIMAL, decimal precision is used.

DECIMAL and NUMERIC with decimal fractions are mapped to j ava. mat h. Bi gDeci mal and can have very
large numbers of digits. In HyperSQL the two typesare equivalent. Thesetypes, together with integral types, arecalled
exact numeric types.

In HyperSQL, REAL, FLOAT, DOUBLE are equivalent and all mapped to doubl e in Java. These types are defined
by the SQL Standard as approximate numeric types. The bit-precision of all these typesis 64 bits.

The decimal precision and scale of NUMERIC and DECIMAL types can be optionally defined. For example,
DECIMAL(10,2) means maximum total number of digitsis 10 and there are always 2 digits after the decimal point,
while DECIMAL (10) means 10 digits without a decimal point. The bit-precision of FLOAT can be defined but it is
ignored and the default bit-precision of 64 is used. The default precision of NUMERIC and DECIMAL (when not
defined) is 100.

Note: If adatabase hasbeen set to ignore type precision limitswiththe SET DATABASE SQL SIZE FAL SE command,
then atype definition of DECIMAL with no precision and scaleistreated as DECIMAL(100,10). In normal operation,
itistreated as DECIMAL (100).

12

HyperS@L SQL Language

Integral Types

In expressions, TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without a decimal point)
can be freely combined and no data narrowing takes place. The resulting valueis of atype that can support al possible
values.

If the SELECT statement refers to a simple column or function, then the return type is the type corresponding to the
column or the return type of the function. For example:

CREATE TABLE t(a | NTEGER b Bl G NT);
SELECT MAX(a), MAX(b) FROMt:

will return a Resul t Set where the type of the first column isj ava. | ang. | nt eger and the second column is
j ava. | ang. Long. However,

| SELECT MAX(a) + 1, MAX(b) + 1 FROMt; |

will returnj ava. | ang. Long and Bi gDeci mal values, generated as aresult of uniform type promotion for all the
return values. Note that type promotion to Bi gDeci mal ensures the correct value is returned if MAX(b) evaluates
toLong. MAX_VALUE.

Thereisno built-in limit on the size of intermediate integral valuesin expressions. As aresult, you should check for
thetype of the Resul t Set column and choose an appropriate get XXXX() method to retrieveit. Alternatively, you
can use the get Qbj ect () method, then cast the result to j ava. | ang. Nunber and use thei nt Val ue() or
| ongVal ue() methods on the result.

When the result of an expressionis stored in acolumn of adatabasetable, it hasto fit in the target column, otherwise an
error isreturned. For example when 1234567890123456789012 / 12345687901234567890 isevaluated,
the result can be stored in any integral type column, even a TINYINT column, asit isasmall value.

In SQL Statements, an integer literal is treated as INTEGER, unless its value does not fit. In this caseit is treated as
BIGINT or DECIMAL, depending on the value.

Depending on the types of the operands, the result of the operation is returned in a JDBC Resul t Set in any of
therelated Javatypes: | nt eger, Long or Bi gDeci mal . TheResul t Set . get XXXX() methods can be used to
retrieve the values so long as the returned value can be represented by the resulting type. Thistypeis deterministically
based on the query, not on the actual rows returned.

Other Numeric Types

In SQL statements, number literals with a decimal point are treated as DECIMAL unless they are written with an
exponent. Thus 0. 2 isconsidered a DECIMAL value but 0. 2EOQ is considered a DOUBLE value.

When an approximate numeric type, REAL, FLOAT or DOUBLE (all synonymous) is part of an expression involving
different numeric types, the type of the result is DOUBLE. DECIMAL values can be converted to DOUBLE unless
they are beyond the Doubl e. M N_VALUE - Doubl e. MAX_ VALUE range. For example, A * B, A/ B, A + B,
etc. will return aDOUBLE valueif either A or BisaDOUBLE.

Otherwise, when no DOUBLE value exists, if aDECIMAL or NUMERIC vaueis part an expression, the type of the
result is DECIMAL or NUMERIC. Similar to integral values, when the result of an expression is assigned to a table
column, the value has to fit in the target column, otherwise an error is returned. This means a small, 4 digit value of
DECIMAL type can be assigned to a column of SMALLINT or INTEGER, but avalue with 15 digits cannot.

WhenaDECIMAL valueismultiplied by aDECIMAL or integral type, theresulting scaleisthe sum of the scalesof the
two terms. When they are divided, the result is a value with a scale (number of digitsto the right of the decimal point)
equal to the larger of the scales of the two terms. The precision for both operations is calculated (usually increased)
to allow all possible results.

13

HyperS@L SQL Language

Thedistinction between DOUBLE and DECIMAL isimportant when adivision takes place. For example, 10. 0/ 8. 0
(DECIMAL) equals 1. 2 but 10. OEO/ 8. 0EO (DOUBLE) equals 1. 25. Without division operations, DECIMAL
values represent exact arithmetic.

REAL, FLOAT and DOUBLE values are all stored in the database as j ava. | ang. Doubl e objects. Special
values such as NaN and +-Infinity are also stored and supported. These values can be submitted to the database
via JDBC Pr epar edSt at enent methods and are returned in Resul t Set objects. In order to alow division
by zero of DOUBLE values in SQL statements (which returns NaN or +-Infinity) you should set the property
hsgldb.double_nan as false (SET DATABASE SQL DOUBLE NAN FALSE). The double values can be retrieved
from a Resul t Set in the required type so long as they can be represented. For setting the values, when
Pr epar edSt at enent . set Doubl e() orset Fl oat () isused, thevalueistreated asaDOUBL E automatically.

In short,

<nuneric type> ::= <exact numeric type> | <approximte numeric type>

<exact numeric type> ::= NUMERIC [<left paren> <precision>|[<conma> <scal e>]
<right paren>] | { DECIMAL | DEC} [<l eft paren> <preci sion>[<conma> <scal e>]

<right paren>] | SMALLINT | INTEGER | INT | BIG NT

<approxi mate nuneric type> ::= FLOAT [<left paren> <precision> <right paren>]
| REAL | DOUBLE PRECI SI ON

<preci sion> ::= <unsigned integer>

<scal e> ::= <unsigned integer>

Boolean Type

The BOOLEAN type conforms to the SQL Standard and represents the values TRUE, FALSE and UNKNOWN. This
type of column can be initialised with Java boolean values, or with NULL for the UNKNOWN value.

Thethree-valuelogic is sometimes misunderstood. For example, X IN (1, 2, NULL) does not return true if x isSNULL.
In previous versions of HyperSQL, BIT was simply an aiasfor BOOLEAN. In version 2, BIT isasingle-bit bit map.
<bool ean type> ::= BOOLEAN

The SQL Standard does not support type conversion to BOOLEAN apart from character stringsthat consists of boolean
literals. Because the BOOLEAN type isrelatively new to the Standard, several database products used other types to
represent boolean values. For improved compatibility, HyperSQL allows some type conversions to bool ean.

Values of BIT and BIT VARYING types with length 1 can be converted to BOOLEAN. If the bit is set, the result of
conversion isthe TRUE value, otherwiseit is FALSE.

Vauesof TINYINT, SMALLINT, INTEGER and BIGINT types can be converted to BOOLEAN. If the valueis zero,
theresult isthe FALSE value, otherwise it is TRUE.

Character String Types

The CHARACTER, CHARACTER VARYING and CLOB types are the SQL Standard character string types.
CHAR, VARCHAR and CHARACTER LARGE OBJECT are synonyms for these types. HyperSQL also supports
LONGVARCHAR as a synonym for VARCHAR. If LONGVARCHAR is used without a length, then a length of
16M is assigned. You can set LONGVARCHAR to map to CLOB, with thesqgl . | ongvar _i s_| ob connection
property or the SET DATABASE SQL LONGVAR ISLOB TRUE statement..

HyperSQL 'sdefault character set is Unicode, therefore all possible character strings can be represented by these types.

14

HyperS@L SQL Language

The SQL Standard behaviour of the CHARACTER typeisaremnant of legacy systemsin which character strings are
padded with spaces to fill afixed width. These spaces are sometimes significant while in other cases they are silently
discarded. It would be best to avoid the CHARACTER type altogether. With the rest of the types, the strings are not
padded when assigned to columns or variables of the given type. The trailing spaces are still considered discardable
for al character types. Therefore if a string with trailing spaces is too long to assign to a column or variable of a
given length, the spaces beyond the type length are discarded and the assignment succeeds (provided all the characters
beyond the type length are spaces).

The VARCHAR and CLOB types have length limits, but the strings are not padded by the system. Note that if you
use a large length for aVARCHAR or CLOB type, no extra space is used in the database. The space used for each
stored item is proportional to its actual length.

If CHARACTER is used without specifying the length, the length defaults to 1. For the CLOB type, the length limit
can be defined in units of kilobyte (K, 1024), megabyte (M, 1024 * 1024) or gigabyte (G, 1024 * 1024 * 1024), using
the<mul ti pl i er>. 1f CLOB isused without specifying the length, the length defaultsto 1GB.

<character string type> ::= { CHARACTER | CHAR } [<left paren> <character
[ength> <right paren>] | { CHARACTER VARYING | CHAR VARYING | VARCHAR } <left
paren> <character |ength> <right paren> | LONGVARCHAR [<l eft paren> <character
| engt h> <right paren>] | <character |arge object type>

<character |arge object type> ::= { CHARACTER LARGE OBJECT | CHAR LARGE OBJECT
| CLOB } [<left paren> <character |arge object |ength> <right paren>]
<character length> ::= <unsigned integer> [<char length units>]

<l arge object length>::=<length>[<nultiplier>] | <large object | ength token>
<character |large object length>::=<large object |l ength>[<char | ength units>]
<l arge object length token> ::= <digit> .. <multiplier>

<multiplier> ::= K| M| G

<char length units> ::= CHARACTERS | OCTETS

Each character type has a collation. Thisis either a default collation or stated explicitly with the COLLATE clause.
Collations are discussed in the Schemas and Database Objects chapter.

CHAR(10)

CHARACTER(10)

VARCHAR(2)

CHAR VARYI NG 2)

CLOB(1000)

CLOB(30K)

CHARACTER LARGE OBJECT(1M
LONGVARCHAR

Binary String Types

The BINARY, BINARY VARYING and BLOB types are the SQL Standard binary string types. VARBINARY
and BINARY LARGE OBJECT are synonyms for BINARY VARYING and BLOB types. HyperSQL also supports
LONGVARBINARY asasynonym for VARBINARY. You can set LONGVARBINARY to map to BLOB, with the
sql . I ongvar _i s_| ob connection property or the SET DATABASE SQL LONGVAR ISLOB TRUE statement.

Binary string types are used in a similar way to character string types. There are several built-in functions that are
overloaded to support character, binary and bit strings.

15

HyperS@L SQL Language

The BINARY type represents a fixed width-string. Each shorter string is padded with zeros to fill the fixed width.
Similar to the CHARACTER type, the trailing zerosin the BINARY string are simply discarded in some operations.
For the same reason, it is best to avoid this particular type and use VARBINARY instead.

When two binary values are compared, if oneisof BINARY type, then zero padding is performed to extend the length
of the shorter string to the longer one before comparison. No padding is performed with other binary types. If the bytes
compare equal to the end of the shorter value, then the longer string is considered larger than the shorter string.

If BINARY is used without specifying the length, the length defaults to 1. For the BLOB type, the length limit can
be defined in units of kilobyte (K, 1024), megabyte (M, 1024 * 1024) or gigabyte (G, 1024 * 1024 * 1024), using the
<rul ti plier>.1f BLOB isused without specifying the length, the length defaultsto 1GB.

The UUID type represents a UUID string. The type is similar to BINARY(16) but with the extra
enforcement that disallows assigning, casting or compareing with shorter or longer strings. Strings such as
'24ff1824-01e8-4dac-8eb3-3fee32ad2b9c’ or '24ff182401e84dac8eb33fee32ad2b9c’ are allowed. When avalue of the
UUID typeis converted to a CHARACTER type, the hyphens are inserted in the required positions.

<bi nary string type>::=BINARY [<l eft paren> <l ength> <ri ght paren>] | { Bl NARY
VARYI NG | VARBI NARY } <l eft paren> <l ength> <ri ght paren>| LONGVARBI NARY [<l eft
paren> <l ength> <right paren>] | U D | <binary |arge object string type>

<bi nary large object string type> ::= { BINARY LARGE OBJECT | BLOB } [<left
paren> <l arge object |ength> <right paren>]

<l engt h> ::= <unsi gned i nteger>

Bl NARY(10)

VARBI NARY(2)

Bl NARY VARY! N& 2)

BLOB(1000)

BLOB(300

Bl NARY LARGE OBJECT(1M
LONGVARBI NARY

Bit String Types

The BIT and BIT VARYING types are the supported bit string types. These types were defined by SQL:1999 but
were |later removed from the Standard. Bit types represent bit maps of given lengths. Each bitisO or 1. The BIT type
represents a fixed width-string. Each shorter string is padded with zeros to fill the fixed with. If BIT is used without
specifying the length, the length defaults to 1. The BIT VARYING type has a maximum width and shorter strings
are not padded.

Before the introduction of the BOOLEAN type to the SQL Standard, a single-bit string of the type BIT(1) was
commonly used. For compatibility with other productsthat do not conformto, or extend, the SQL Standard, HyperSQL
allows values of BIT and BIT VARYING types with length 1 to be converted to and from the BOOLEAN type.
BOOLEAN TRUE is considered equal to B'1', BOOLEAN FALSE is considered equal to B'0'.

For the same reason, numeric val ues can be assigned to columns and variables of the type BIT(1). For assignment, the
numeric value zero is converted to B'0', while all other values are converted to B'1'. For comparison, numeric values
lisconsidered equal to B'1' and numeric value zero is considered equal to B'0'.

It is not allowed to perform other arithmetic or boolean operationsinvolving BIT(1) and BIT VARYING(1). The kid
of operations allowed on hit strings are analogous to those allowed on BINARY and CHARACTER strings. Several
built-in functions support all three types of string.

<bit string type> ::= BIT [<left paren> <length> <right paren>] | BIT VARYI NG
<l eft paren> <l ength> <right paren>

16

HyperS@L SQL Language

BIT
BI T(10)
BI T VARYI NG(2)

Lob Data

BLOB and CLOB arelob types. These types are used for very long strings that do not necessarily fit in memory. Small
lobs that fit in memory can be accessed just like BINARY or VARCHAR column data. But lobs are usually much
larger and therefore accessed with special JDBC methods.

Toinsert alobinto atable, or to update a column of lob type with anew lob, you can usetheset Bi nar ySt r eam()

and set Char act er St r eam() methodsof JDBCj ava. sql . Prepar edSt at enent . These are very efficient
methodsfor long lobs. Other methods are al so supported. If thedatafor the BLOB or CLOB isalready amemory object,
you can use the set Byt es() or set Stri ng() methods, which are efficient for memory data. Another method
isto obtain alob with the get Bl ob() and get Cl ob() methodsof j ava. sgl . Connect i on, populateits data,
thenusetheset Bl ob() orset C ob() methodsof Pr epar edSt at enent . Y et another method allowsto create
instances of or g. hsql db. j dbc. JDBCBI obFi | e andor g. hsql db. j dbc. JDBCCl obFi | e and construct a
largelob for use with set Bl ob() andset Cl ob() methods.

A lob isretrieved from a ResultSet with the get Bl ob() or get C ob() method. The steaming methods of the lob
objects are then used to access the data. HyperSQL also allows efficient access to chunks of lobswith get Byt es()
or get String() methods. Furthermore, parts of a BLOB or CLOB aready stored in a table can be modified.
An updatable Resul t Set is used to select the row from the table. The get Bl ob() or get C ob() methods of
Resul t Set are used to accessthe lob asaj ava. sql . Bl ob or j ava. sql . Cl ob object. The set Byt es()
and set St ri ng() methods of these objects can be used to modify the lob. Finally the updat eRow() method of
the Resul t Set isused to update the lob in the row. Note these modifications are not allowed with compressed or
encrypted lobs.

Lobs are logically stored in columns of tables. Their physical storage is a separate *.lobs file. Thisfileis created as
soon asaBLOB or CLOB isinserted into the database. The file will grow as new lobs are inserted into the database.
Inversion 2, the * .lobsfileis never deleted even if al lobs are deleted from the database. In this case you can delete
the *.lobs file after a SHUTDOWN. When a CHECKPOINT happens, the space used for deleted lobs is freed and
isreused for future lobs. By default, clobs are stored without compression. Y ou can use a database setting to enable
compression of clobs. This can significantly reduce the storage size of clobs.

Storage and Handling of Java Objects

From version 2.3.4 there are two options for storing Java Objects.

The default option allows storing Serializable object. The objects remain serialized inside the database until they are
retrieved. The application program that retrieves the object must include in its classpath the Java Class for the object,
otherwise it cannot retrieve the object.

Any seridizable Java Object can be inserted directly into a column of type OTHER using any variation of
Pr epar edSt at enent . set Obj ect () methods.

The dternative Live Object option is for nem databases only and is enabled when the database property
sgl.live_object=true is appended to the connection property that creates the mem database. For example
"jdbc: hsqgl db: mem nydb; sql . 1i ve_obj ect =t r ue' . With this option, any Java object can be stored asit
isnot serialized. The SQL statement SET DATABASE SQ. LI VE OBJECT TRUE can be also used. Note the SQL
statement must be executed on the first connection to the database before any datais inserted. No data access should
be made from this connection. Instead, new connections should be used for data access.

For comparison purposes and in indexes, any two Java Objects are considered equal unless one of themisNULL. You
cannot search for a specific object or perform ajoin on a column of type OTHER.

17

HyperS@L SQL Language

Java Objects can simply be stored internally and no operations can be performed on them other than assignment
between columns of type OTHER or checking for NULL. Tests such as WHERE obj ect1 = object2 donot
mean what you might expect, as any non-null object would satisfy such atests. But WHERE obj ect1l |S NOT
NULL is perfectly acceptable.

The engine does not alow normal column values to be assigned to Java Object columns (for example, assigning an
INTEGER or STRING to such a column with an SQL statement such as UPDATE nyt abl e SET obj ect col
= intcol WHERE ...).

<java object type> ::= OTHER

The default method of storage is used when the objects and their state needs to be saved and retrieved in the future.
This method is also used when memory resources are limited and collections of objects are stored and retrieved only
when needed.

The Live Object option uses the database table as a collection of objects. This allows storing some attributes of the
objects in the same table alongside the object itself and fast search and retrieval of objects on their attributes. For
example when many thousands of live objects contain details of films, The film title and the director can be stored in
the table and searches can be performed for films on these attributes:

CREATE TABLE novi es (director VARCHAR(30), title VARCHAR(40), obj OTHER)
SELECT obj FROM novi es WHERE director LIKE 'Luc%

In any case, at least one attribute of the object should be stored to alow efficient retrieval of the objects from both
Live Object and Serialized storage. Often an id number is used a the attribute.

Type Length, Precision and Scale

In older version of HyperSQL, al table column type definitions with a column length, precision or scale qualifier
were accepted and ignored. HSQL DB 1.8 enforced correctness but included an option to enforce the length, precision
or scale.

In HyperSQL 2, length, precision and scale qualifiers are always enforced. For backward compatibility, when older
databases which had the property hsgldb.enforce _strict_size=false are converted to version 2, this property is retained.
However, thisis atemporary measure. Y ou should test your application to ensure the length, precision and scale that
is used for column definitions is appropriate for the application data. You can test with the default database setting,
which enforces the sizes.

String types, including @l BIT, BINARY and CHAR string types plus CLOB and BLOB, are generally defined with
alength. If no length is specified for BIT, BINARY and CHAR, the default length is 1. For CLOB and BLOB an
implementation defined length of 1M is used.

TIME and TIMESTAMP types can be defined with a fractional second precision between 0 and 9. INTERVAL type
definition may have precision and, in some cases, fraction second precision. DECIMAL and NUMERIC types may be
defined with precision and scale. For all of these types a default precision or scale valueisused if oneis not specified.
The default scaleis 0. The default fractional precision for TIME isO, whileitis 6 for TIMESTAMP.

Values can be converted from one type to another in two different ways: by using explicit CAST expression or by
implicit conversion used in assignment, comparison and aggregation.

String values cannot be assigned to VARCHAR columns if they are longer than the defined type length. For
CHARACTER columns, along string can be assigned (with truncation) only if all the characters after the length are
spaces. Shorter strings are padded with the space character when inserted into a CHARACTER column. Similar rules
are applied to VARBINARY and BINARY columns. For BINARY columns, the padding and truncation rules are
applied with zero bytes, instead of spaces.

18

HyperS@L SQL Language

Explicit CAST of avaluetoaCHARACTER or VARCHAR typewill result in forced truncation or padding. So atest
suchasCAST (mycol AS VARCHAR(2)) = 'xy' will findthevaluesbeginning with 'xy'. Thisisthe equivalent
of SUBSTRI NG(mycol FROM 1 FOR 2)= '«xy'.

For al numeric types, the rules of explicit cast and implicit conversion are the same. If cast or conversion causes any
digitsto belost from the fractional part, it can take place. If the non-fractional part of the value cannot be represented
in the new type, cast or conversion cannot take place and will result in a data exception.

There are specia rulesfor DATE, TIME, TIMESTAMP and INTERVAL casts and conversions.

Datetime types

HSQLDB fully supports datetime and interval types and operations, including all relevant optional features, as
specified by the SQL Standard since SQL-92. The two groups of types are complementary.

The DATE type represents a calendar date with YEAR, MONTH and DAY fields.

The TIME type represents time of day with HOUR, MINUTE and SECOND fields, plus an optional SECOND
FRACTION field.

The TIMESTAMP type represents the combination of DATE and TIME types.

TIME and TIMESTAMP types can include WITH TIME ZONE or WITHOUT TIME ZONE (the default) qualifiers.
They can have fractional second parts. For example, TIME(6) has six fractional digits for the second field.

If fractional second precision is not specified, it defaultsto O for TIME and to 6 for TIMESTAMP.

<datetine type> ::= DATE | TIME [<left paren> <tinme precision> <right paren>]
[<with or without tinme zone>] | TIMESTAMP [<l eft paren> <tinestanp precision>
<right paren>] [<with or without time zone>]

<with or without tine zone> ::= WTH TIME ZONE | W THOUT TI ME ZONE
<tinme precision> ::= <time fractional seconds precision>
<tinmestanp precision> ::= <tinme fractional seconds precision>
<time fractional seconds precision> ::= <unsigned integer>

DATE

TI ME(6)

TI MESTAMP(2) W TH TI ME ZONE

Examples of the string literals used to represent date time values, some with time zone, some without, are below:

DATE ' 2008- 08- 22"

TI MESTAMP ' 2008-08- 08 20: 08: 08’

TI MESTAMP ' 2008- 08- 08 20: 08: 08+8: 00" /* Beijing */
TI ME ' 20: 08: 08. 034900'

TI ME ' 20: 08: 08. 034900-8: 00" /* US Pacific */

Time Zone

DATE values do not take time zones. For example United Nations designates 5 June as World Environment Day,
which was observed on DATE '2008-06-05'" in different time zones.

TIME and TIMESTAMP values without time zone, usually have a context that indicates some local time zone. For
example, adatabase for college course timetables usually stores class dates and times without time zones. This works

19

HyperS@L SQL Language

because the location of the collegeisfixed and the time zone displacement isthe samefor all the values. Even when the
events take place in different time zones, for example international flight times, it is possible to store all the datetime
information as references to a single time zone, usually GMT. For some databases it may be useful to store the time
zone displacement together with each datetime value. SQL’s TIME WITH TIME ZONE and TIMESTAMP WITH
TIME ZONE values include a time zone displacement value.

The time zone displacement is of the type INTERVAL HOUR TO MINUTE. This data type is described in the next
section. The legal values are between '-14:00' and '+14:00'.

Operations on Datetime Types

Theexpression<dat eti me expressi on> AT Tl ME ZONE <t i ne di spl acenent > evaluatesto adatetime
value representing exactly the same point of time in the specified <t i me di spl acenent >. The expression, AT
LOCAL isequivaentto AT TI ME ZONE <l ocal time displacenent>. If AT TI ME ZONE isused with
a datetime operand of type WITHOUT TIME ZONE, the operand is first converted to a value of type WITH TIME
ZONE at the session’ s time displacement, then the specified time zone displacement is set for the value. Therefore, in
these cases, the final value depends on the time zone of the session in which the statement was used.

AT TIME ZONE, modifies the field values of the datetime operand. Thisis done by the following procedure:
1. determine the corresponding datetime at UTC.
2. find the datetime value at the given time zone that corresponds with the UTC value from step 1.

Example a

‘ TIME '12:00: 00° AT TIME ZONE | NTERVAL ' 1: 00° HOUR TO M NUTE ‘

If the session’ stime zone displacement is-'8:00', thenin step 1, TIME '12:00:00' is converted to UTC, whichisTIME
'20:00:00+0:00'. In step 2, thisvalueis expressed as TIME '21:00:00+1:00'.

Example b:

‘ TIME '12: 00: 00-5: 00" AT TIME ZONE | NTERVAL ' 1: 00' HOUR TO M NUTE ‘

Because the operand has a time zone, the result is independent of the session time zone displacement. Step 1 results
in TIME '17:00:00+0:00', and step 2 resultsin TIME '18:00:00+1:00

Note that the operand is not limited to datetime literals used in these examples. Any valid expression that evaluates
to a datetime value can be the operand.

Type Conversion

CAST isusedto for all other conversions. Examples:

CAST (<val ue> AS TI ME W THOUT TI ME ZONE)
CAST (<val ue> AS TIME WTH TI ME ZONE)

Inthefirst example, if <val ue> hasatimezone component, it issimply dropped. For example TIME '12:00:00-5:00'
is converted to TIME '12:00:00

In the second example, if <val ue> has no time zone component, the current time zone displacement of the sessionis
added. For example TIME '12:00:00' is converted to TIME '12:00:00-8:00" when the session time zone displacement
is'-8:00'.

Conversion between DATE and TIMESTAMP is performed by removing the TIME component of a TIMESTAMP
value or by setting the hour, minute and second fields to zero. TIMESTAMP '2008-08-08 20:08:08+8:00' becomes
DATE '2008-08-08', while DATE '2008-08-22' becomes TIMESTAMP '2008-08-22 00:00:00'.

20

HyperS@L SQL Language

Conversion between TIME and TIMESTAMP is performed by removing the DATE field values of a TIMESTAMP
value or by appending the fields of the TIME value to the fields of the current session date value.

Assignment

When avalueisassigned to adatetime target, e.g., avalueis used to update arow of atable, the type of the value must
be the same as the target, but the WITH TIME ZONE or WITHOUT TIME ZONE characteristics can be different. If
the types are not the same, an explicit CAST must be used to convert the value into the target type.

Comparison

When values WITH TIME ZONE are compared, they are converted to UTC values before comparison. If a value
WITH TIME ZONE iscompared to another WITHOUT TIME ZONE, thenthe WITH TIME ZONE vaueisconverted
to AT LOCAL, then converted to WITHOUT TIME ZONE before comparison.

It is not recommended to design applications that rely on comparisons and conversions between TIME values WITH
TIME ZONE. The conversions may involve normalisation of the time value, resulting in unexpected results. For
example, the expression: BETWEEN(TIME '12:00:00-8:00', TIME '22:00:00-8:00") isconverted to BETWEEN(TIME
'20:00:00+0:00', TIME '06:00:00+0:00") when it is evaluated in the UTC zone, which is aways FALSE.

Functions

Severa functions return the current session timestamp in different datetime types:

CURRENT_DATE DATE

CURRENT_TIME TIMEWITH TIME ZONE
CURRENT_TIMESTAMP TIMESTAMPWITH TIME ZONE
LOCALTIME TIMEWITHOUT TIME ZONE
LOCALTIMESTAMP TIMESTAMPWITHOUT TIME ZONE

HyperSQL supports a very extensive range of functions for conversion, extraction and manipulation of DATE and
TIMESTAMP values. See the Built In Functions chapter.

Session Time Zone Displacement

When an SQL sessionisstarted (withaJDBC connection) thelocal time zone of the client VM (including any seasonal
time adjustments such as daylight saving time) is used as the session time zone displacement. Note that the SQL session
time displacement is not changed when a seasonal time adjustment takes place while the session is open. To change
the SQL session time zone displacement use the following commands:

SET TIME ZONE <tine di spl acenent >
SET TI ME ZONE LOCAL

Thefirst command sets the displacement to the given value. The second command restoresthe original, real time zone
displacement of the session.

Datetime Values and Java

When datetime values are sent to the database using the Pr epar edSt at enent or Cal | abl eSt at enent
interfaces, the Java object is converted to the type of the prepared or callable statement parameter. This type may
be DATE, TIME, or TIMESTAMP (with or without time zone). The time zone displacement is the time zone of the
JDBC session.

When datetime values are retrieved from the database using the Resul t Set interface, there are two representations.
Theget Stri ng(..) methods of the Resul t Set interface, return an exact representation of the value in the SQL

21

HyperS@L SQL Language

type asit is stored in the database. This includes the correct number of digits for the fractional second field, and for
valueswith time zone displacement, the time zone displacement. Thereforeif TIME '12:00:00' is stored in the database,
all usersin different time zones will get '12:00:00' when they retrieve the value as a string. The get Ti ne(..) and
get Ti mest anp(..) methods of the Resul t Set interface return Java objects that are corrected for the session
time zone. The UTC millisecond value contained the j ava. sql . Ti me or j ava. sql . Ti nest anp objects will
be adjusted to the time zone of the session, thereforethet oSt ri ng() method of these objects return the same values
in different time zones.

If you want to store and retrieve UTC values that are independent of any session's time zone, you can use a
TIMESTAMPWITH TIME ZONE column. The setTime(...) and setTimestamp(...) methods of the PreparedStatement
interface which have a Calendar parameter can be used to assign the values. The time zone of the given Calendar
argument is used as the time zone. Conversely, the getTime(...) and getTimestamp(...) methods of the ResultSet
interface which have a Calendar parameter can be used with a Calendar argument to retrieve the values.

JDBC has an unfortunate limitation and does not include type codes for SQL datetime types that have a TIME
ZONE property. Therefore, for compatibility with database tools that are limited to the JDBC type codes,
HyperSQL reports these types by default as datetime types without TIME ZONE. You can use the URL property
hsql db. transl ate_dti _t ypes=f al se to override the default behaviour.

Non-Standard Extensions

HyperSQL version 2.3.0 supports some extenstions to the SQL standard treatment of datetime and interval types. For
exampl e, the Standard expression to add a number of days to a date has an explicit INTERVAL value but HSQLDB
also alows an integer to be used without specifying DAY . Examples of some Standard expressions and their non-
standard alternatives are given below:

-- standard forns
CURRENT_DATE + '2' DAY
SELECT (LOCALTI MESTAMP - ati mest anpcol uim) DAY TO SECOND FROM at abl e

-- non-standard forns
CURRENT_DATE + 2
SELECT LOCALTI MESTAMP - ati mest anpcol unm FROM at abl e

It is recommended to use the SQL Standard syntax asit is more precise and avoids ambiguity.

Interval Types

Interval types are used to represent differences between date time val ues. The difference between two date time values
can be measured in seconds or in months. For measurements in months, the units YEAR and MONTH are available,
while for measurementsin seconds, the units DAY, HOUR, MINUTE, SECOND are available. The units can be used
individually, or asarange. Aninterval type can specify the precision of the most significant field and the second fraction
digits of the SECOND field (if it hasa SECOND field). The default precision is 2. The default second precisionis 0.

<interval type> ::= INTERVAL <interval qualifier>
<interval qualifier>::= <start field> TO<end field>| <single datetime field>
<start field> ::= <non-second primary datetinme field> [<left paren> <interval

| eading field precision> <right paren>]

<end field> ::= <non-second primary datetinme field> | SECOND [<left paren>
<interval fractional seconds precision> <right paren>]

<single datetine field> ::= <non-second prinmary datetine field> [<left paren>
<interval leading field precision> <right paren>] | SECOND [<left paren>

22

HyperS@L SQL Language

<interval leading field precision> [<coma> <interval fractional seconds
precision>] <right paren>]

<primary datetinme field> ::= <non-second prinmary datetine field> | SECOND
<non-second prinmary datetine field> ::= YEAR | MONTH | DAY | HOUR | M NUTE
<interval fractional seconds precision> ::= <unsigned integer>

<interval leading field precision> ::= <unsigned integer>

Examples of INTERVAL type definition:

| NTERVAL YEAR TO MONTH

| NTERVAL YEAR(3)

| NTERVAL DAY(4) TO HOUR

| NTERVAL M NUTE(4) TO SECOND(6)
| NTERVAL SECOND(4, 6)

The word INTERVAL indicates the general type name. The rest of the definition is called an <i nt er val
qgual i fi er>. Thisdesignation isimportant, asin most expressions<i nt erval qual i fi er > isused without
theword INTERVAL.

Interval Values

An interval value can be negative, positive or zero. An interval type has all the datetime fields in the specified range.
These fields are similar to those in the TIMESTAMP type. The differences are as follows:

The first field of an interval value can hold any numeric value up to the specified precision. For example, the hour
fieldin HOUR(2) TO SECOND can hold values above 23 (up to 99). The year and month fields can hold zero (unlike
aTIMESTAMP value) and the maximum value of amonth field that is not the most significant field, is 11.

The standard function ABS(<i nt er val val ue expressi on>) canbeused to convert anegativeinterval value
to a positive one.

Theliteral representation of interval values consists of the type definition, with a string representing the interval value
inserted after the word INTERVAL. Some examples of interval literal below:

I NTERVAL ' 145 23:12:19.345' DAY(3) TO SECOND(3)

I NTERVAL ' 3503: 12: 19. 345" HOUR TO SECOND(3) /* equal to the first value */

I NTERVAL ' 19. 345" SECOND(4,3) /* nmaxi mnum nunber of digits for the second value is 4, and each
value is expressed with three fraction digits. */

I NTERVAL ' -23-10'" YEAR(2) TO MONTH

Interval values of the types that are based on seconds can be cast into one another. Similarly those that are based on
months can be cast into one another. It is not possible to cast or convert a value based on seconds to one based on
months, or vice versa.

When a cast is performed to a type with a smaller least-significant field, nothing is lost from the interval value.
Otherwise, the values for the missing least-significant fields are discarded. Examples:

CAST (I NTERVAL ' 145 23:12:19' DAY TO SECOND AS | NTERVAL DAY TO HOUR) = I NTERVAL ' 145 23' DAY
TO HOUR
CAST(| NTERVAL ' 145 23' DAY TO HOUR AS | NTERVAL DAY TO SECOND) = | NTERVAL ' 145 23:00: 00' DAY TO
SECOND

A numeric value can be cast to an interval type. In this case the numeric value is first converted to a single-field
INTERVAL typewiththesamefield astheleast significant field of thetarget interval type. Thisvalueisthen converted
to the target interval type For example CAST(22 ASINTERVAL YEAR TO MONTH) evauatesto INTERVAL '22'

23

HyperS@L SQL Language

MONTH and then INTERVAL '1 10' YEAR TO MONTH. Note that SQL Standard only supports caststo single-field
INTERVAL types, while HyperSQL allows casting to multi-field types as well.

An interval value can be cast to a numeric type. In this case the interval value is first converted to a single-field
INTERVAL type with the same field as the least significant filed of the interval value. The value is then converted
to the target type. For example CAST (INTERVAL '1-11' YEAR TO MONTH AS INT) evaluates to INTERVAL
'23' MONTH, and then 23.

An interval value can be cast into a character type, which resultsin an INTERVAL literal. A character value can be
cast into an INTERVAL type so long asit isastring with aformat compatible with an INTERVAL literal.

Two interval values can be added or subtracted so long as the types of both are based on the samefield, i.e., both are
based on MONTH or SECOND. The values are both converted to a single-field interval type with same field as the
least-significant field between the two types. After addition or subtraction, the result is converted to an interval type
that contains all the fields of the two original types.

An interval value can be multiplied or divided by a numeric value. Again, the value is converted to a numeric, which
isthen multiplied or divided, before converting back to the original interval type.

Aninterval valueis negated by simply prefixing with the minus sign.

Interval values used in expressions are either typed values, including interval literals, or are interval casts. The
expression; <expr essi on> <interval qualifier>isacastof theresult of the <expr essi on> into the
INTERVAL typespecifiedby the<i nt erval qualifier>. The cast can be forned by addi ng t he
keywords and parent heses as follows: CAST (<expression> AS | NTERVAL <interval
qualifier>).

The exanples below feature different forms of expression that represent an
i nterval value, which is then added to the given date literal.

DATE ' 2000- 01-01' + INTERVAL '1-10' YEAR TO MONTH /* interval literal */

DATE ' 2000-01-01' + '1-10' YEAR TO MONTH /* the string '1-10" is cast into | NTERVAL YEAR TO
MONTH */

DATE ' 2000- 01-01' + 22 MONTH /* the integer 22 is cast into | NTERVAL MONTH, sane val ue as above
*/

DATE ' 2000- 01-01' - 22 DAY /* the integer 22 is cast into | NTERVAL DAY */

DATE ' 2000- 01-01' + COL2 /* the type of COL2 nust be an | NTERVAL type */

DATE ' 2000- 01-01' + COL2 MONTH /* COL2 nmay be a nunmber, it is cast into a MONTH i nterval */

Datetime and I nterval Operations

An interval can be added to or subtracted from a datetime value so long as they have some fields in common. For
example, an INTERVAL MONTH cannot be added to aTIME value, whilean INTERVAL HOUR TO SECOND can.
The interval is first converted to a numeric value, then the value is added to, or subtracted from, the corresponding
field of the datetime value.

If the result of addition or subtraction is beyond the permissible range for the field, the field value is normalised and
carried over to the next significant field until all the fields are normalised. For example, adding 20 minutesto TIME
'23:50:10" will result successively in '23:70:10, '24:10:10" and finally TIME '00:10:10'". Subtracting 20 minutes from
theresult is performed asfollows: '00:-10:10', '-1:50:10', finally TIME '23:50:10". Notethat if DATE or TIMESTAMP
normalisation resultsin the Y EAR field value out of the range (1,1000), then an exception condition is raised.

If an interval value based on MONTH is added to, or subtracted from aDATE or TIMESTAMP value, the result may
have an invalid day (30 or 31) for the given result month. In this case an exception condition is raised.

The result of subtraction of two datetime expressions is an interval value. The two datetime expressions must be of
the same type. The type of the interval value must be specified in the expression, using only the interval field names.

24

HyperS@L SQL Language

The two datetime expressions are enclosed in parentheses, followed by the <i nt erval qualifi er> fidds. In
the first example below, COL1 and COL 2 are of the same datetime type, and the result is evaluated in INTERVAL
YEAR TO MONTH type.

(COL1 — COL2) YEAR TO MONTH /* the difference between two DATE or two TlI EMSTAMP val ues in years
and nonths */

(CURRENT_DATE — COL3) DAY /* the nunber of days between the value of COL3 and the current date
*/

(CURRENT_DATE - DATE ' 2000-01-01') YEAR TO MONTH /* the nunber of years and nonths since the
begi nning of this century */

CURRENT_DATE - 2 DAY /* the date of the day before yesterday */

(CURRENT_TI MESTAMP - TI MESTAMP ' 2009- 01-01 00: 00: 00') DAY(4) TO SECOND(2) /* days to seconds
since the given date */

The individua fields of both datetime and interval values can be extracted using the EXTRACT function. The same
function can also be used to extract the time zone displacement fields of a datetime value.

EXTRACT ({YEAR | MONTH | DAY | HOUR | MNUTE | SECOND | TIMEZONE HOUR |
TI MEZONE_M NUTE | DAY_OF WEEK | VEEK OF_YEAR } FROM{<dateti me val ue> | <interval
val ue>})

The dichotomy between interval types based on seconds, and those based on months, stems from the fact that the
different calendar months have different numbers of days. For example, the expression, “nine months and nine days
since an event” is not exact when the date of the event is unknown. It can represent a period of around 284 days give
or take one. SQL interval values are independent of any start or end dates or times. However, when they are added to
or subtracted from certain date or timestamp values, the result may be invalid and cause an exception (e.g. adding one
month to January 30 results in February 30, which isinvalid).

JDBC has an unfortunate limitation and does not include type codes for SQL INTERVAL types. Therefore, for
compatibility with database tools that are limited to the JDBC type codes, HyperSQL reports these types by default as
VARCHAR. You can use the URL property hsql db. transl ate_dti _types=fal se to override the default
behaviour.

Arrays

Array are a powerful feature of SQL:2008 and can help solve many common problems. Arrays should not be used
as a substitute for tables.

HyperSQL supports arrays of values according to the SQL:2008 Standard.

Elements of the array are either NULL, or of the same datatype. It is possible to define arrays of all supported types,
including the types covered in this chapter and user defined types, except LOB types. An SQL array isone dimensional
and is addressed from position 1. An empty array can also be used, which has no element.

Arrays can be stored in the database, as well as being used as temporary containers of values for simplifying SQL
statements. They facilitate data exchange between the SQL engine and the user's application.

The full range of supported syntax allows array to be created, used in SELECT or other statements, combined with
rows of tables and used in routine calls.

Array Definition

Thetype of atable column, aroutine parameter, avariable, or the return value of afunction can be defined asan array.

<array type> ::= <data type> ARRAY [<left bracket or trigraph> <maxi mnum
cardinality> <right bracket or trigraph>]

25

HyperS@L SQL Language

The word ARRAY is added to any valid type definition except BLOB and CLOB type definitions. If the optional
<maxi mum car di nal i t y>isnot used, the default valueis 1024. The size of the array cannot be extended beyond
maximum cardinality.

In the example below, the table contains a column of integer arrays and a column of varchar arrays. The VARCHAR
array hasan explicit maximum size of 10, which means each array can have between 0 and 10 elements. The INTEGER
array has the default maximum size of 1024. The scores column has a default clause with an empty array. The default
clause can be defined only as DEFAULT NULL or DEFAULT ARRAY[] and does not allow arrays containing
elements.

CREATE TABLE t (id INT PRI MARY KEY, scores |NT ARRAY DEFAULT ARRAY[], nanmes VARCHAR(20)
ARRAY[10])

An array can be constructed from value expressions or a query expression.

<array val ue constructor by enuneration> ::= ARRAY <left bracket or trigraph>
<array element |ist> <right bracket or trigraph>

<array el ement list>::= <value expression>[{ <comma> <val ue expression>}...]

<array value constructor by query> ::= ARRAY <l|left paren> <query expression>
[<order by clause>] <right paren>

In the examples below, arrays are constructed from values, column references or variables, function calls, or query
eXpressions.

ARRAY [1, 2, 3]

ARRAY ['HOT', 'COLD]

ARRAY [varl, var2, CURRENT_DATE]

ARRAY (SELECT | ast nane FROM nanest abl e ORDER BY i d)

Inserting and updating atablewithan ARRAY column can use array constructors, not only for updated column values,
but also in equality search conditions:

I NSERT INTO t VALUES 10, ARRAY[1, 2,3], ARRAY['HOT', 'COLD]
UPDATE t SET nanmes = ARRAY[' LARGE', 'SMALL'] WHERE id = 12
UPDATE t SET nanmes = ARRAY[' LARGE', 'SMALL'] WHERE id < 12 AND scores = ARRAY] 3, 4]

When using a PreparedStatement with an ARRAY parameter, an object of the type java.sql.Array must be used to set
the parameter. The or g. hsql db. j dbc. JDBCAr r ayBasi ¢ class can be used for constructing a java.sgl.Array
object in the user's application. Code fragment below:

String sql = "UPDATE t SET nanmes = ? WHERE id = ?";
Prepar edSt at enent ps = connecti on. prepar eSt at enent (sql)
Obj ect[] data = new Object[]{"one", "two"};

/1 default types defined in org. hsqgl db.types. Type can be used

org. hsqgl db. types. Type type = org. hsql db. types. Type. SQL_VARCHAR DEFAULT;
JDBCArrayBasi ¢ array = new JDBCArrayBasi c(data, type);

ps.setArray(1, array);

ps.setlnt(2, 1000);

ps. execut eUpdat e() ;

Trigraph
A trigraph is a substitute for <left bracket> and <right bracket>.

<l eft bracket trigraph> ::= ?27?(

26

HyperS@L SQL Language

<right bracket trigraph> ::= ??)

The example below shows the use of trigraphs instead of brackets.

INSERT INTO t VALUES 10, ARRAY??(1, 2,3??), ARRAY['HOT', 'COLD]
UPDATE t SET nanes = ARRAY ??('LARGE', 'SMALL'??) WHERE id = 12
UPDATE t SET nanes = ARRAY['LARGE', 'SMALL'] WHERE id < 12 AND scores = ARRAY[3, 4]

Array Reference

The most common operations on an array are element reference and assignment, which are used when reading or
writing an element of the array. Unlike Java and many other languages, arrays are extended if an element is assigned
to an index beyond the current length. This can result in gaps containing NULL elements. Array length cannot exceed
the maximum cardinality.

Elements of al arrays, including those that are the result of function calls or other operations can be referenced for
reading.

<array elenment reference> ::= <array val ue expressi on> <l eft bracket> <nuneric
val ue expression> <right bracket>

Elements of arrays that are table columns or routine variables can be referenced for writing. This is done in a SET
statement, either inside an UPDATE statement, or as a separate statement in the case of routine variables, OUT and
INOUT parameters.

<target array elenent specification> ::= <target array reference> <l eft bracket
or trigraph> <sinple value specification> <right bracket or trigraph>

<target array reference> ::= <SQ paraneter reference> | <colum reference>

Note that only simple values or variables are alowed for the array index when an assignment is performed. The
exampl es below demonstrates how elements of the array are referenced in SELECT and an UPDATE statement.

SELECT scores[ranking], nanmes[ranking] FROMt JONt1l on (t.id = t1.tid)
UPDATE t SET scores[2] = 123, nanes[2] = 'Reds' WHERE id = 10

SELECT scores[ranking], names[ranking] FROMt JONt1l on (t.id = t1.tid)
UPDATE t SET scores[2] = 123, nanes[2] = 'Reds’' WHERE id = 10

Array Operations
Several SQL operations and functions can be used with arrays.
CONCATENATION

Array concatenation is performed similar to string concatenation. All elements of the array on the right are appended
to the array on left.

<array concatenation> ::= <array value expression 1> <concatenation operator>
<array val ue expression 2>

<concat enation operator> ::= ||
FUNCTIONS

Seven functions operate on arrays. Details are described in the Built In Functions chapter.

27

HyperS@L SQL Language

ARRAY_AGG is an aggregate function and produces an array containing values from differnt rows of a SELECT
statement. Details are described in the Data Access and Change chapter.

SEQUENCE_ARRAY creates an array with sequential elements.
CARDI NALI TY <l eft paren> <array val ue expressi on> <right paren>
MAX_CARDI NALI TY <l eft paren> <array val ue expression> <right paren>

Array cardinality and max cardinality are functions that return an integer. CARDINALITY returns the e ement count,
while MAX_CARDINALITY returns the maximum declared cardinality of an array.

POSI TI ON_ARRAY <l eft paren> <val ue expression> | N <array val ue expressi on> [FROM
<nuneric val ue expression>] <right paren>

The POSITION_ARRAY function returns the position of the first match for the <value expression> from the start or
from the given start position when <numeric value expression> is used.

TRIM ARRAY <left paren> <array value expression> <comma> <nuneric value
expressi on> <right paren>

The TRIM_ARRAY function returns a copy of an array with the specified number of elements removed from the end
of thearray. The<array val ue expressi on> can beany expression that evaluatesto an array.

SORT_ARRAY <l eft paren> <array value expression> [{ ASC | DESC }] [NULLS
{ FIRST | LAST }] <right paren>

The SORT_ARRAY function returns a sorted copy of an array. NULL elements appear at the beginning of the new
array. You can change the sort direction or the position of NULL elements with the option keywords.

CAST

An array can be cast into an array of a different type. Each element of the array is cast into the element type of the
target array type.

UNNEST
Arrays can be converted into table references with the UNNEST keyword.
UNNEST(<array val ue expression>) [WTH ORDI NALI TY]

The<array val ue expressi on> can be any expression that evaluates to an array. A table is returned that
contains one column when WITH ORDINALITY is not used, or two columns when WITH ORDINALITY is used.
The first column contains the elements of the array (including all the nulls). When the table has two columns, the
second column contains the ordinal position of the element in the array. When UNNEST is used in the FROM clause
of aquery, itimpliesthe LATERAL keyword, which meansthe array that is converted to table can belong to any table
that precedes the UNNEST in the FROM clause. Thisisexplained in the Data Access and Change chapter.

INLINE CONSTRUCTOR

Array constructors can be used in SELECT and other statements. For example, an array constructor with a subquery
can return the values from several rows as one array.

The example below showsan ARRAY constructor with a correlated subquery to return the list of order valuesfor each
customer. The CUSTOMER table that isincluded for testsin the DatabaseM anager GUI app is the source of the data.

SELECT FI RSTNAME, LASTNAME, ARRAY(SELECT | NvVO CE. TOTAL FROM | N\VO CE WHERE CUSTOMVERI D =
CUSTOMER. | D) AS ORDERS FROM CUSTOMER

28

HyperS@L SQL Language

FI RSTNAVE LASTNAME ORDERS

Laura St eel ARRAY[2700. 90, 4235. 70]

Rober t Ki ng ARRAY[4761. 60]

Rober t Somrer ARRAY[]

M chael Smith ARRAY[3420. 30]
COMPARISON

Arrays can be compared for equality, but they cannot be compared for ordering values or range comparison. Array
expressions are therefore not allowed in an ORDER BY clause, or in a comparison expression such as GREATER
THAN. It is possible to define a UNIQUE constraint on acolumn of ARRAY type. Two arrays are equal if they have
the same length and the values at each index position are either equal or both NULL.

USER DEFINED FUNCTIONS and PROCEDURES

Array parameters, variables and return values can be specified in user defined functions and procedures, including
aggregate functions. An aggregate function can return an array that contains al the scalar values that have been
aggregated. These capabilities allow awider range of applications to be covered by user defined functions and easier
data exchange between the engine and the user's application.

Indexes and Query Speed

HyperSQL supports PRIMARY KEY, UNIQUE and FOREIGN KEY constraints, which can span multiple columns.

Theengine createsindexesinternally to support PRIMARY KEY, UNIQUE and FOREIGN KEY constraints: aunique
index is created for each PRIMARY KEY or UNIQUE constraint; an ordinary index is created for each FOREIGN
KEY constraint.

HyperSQL allows defining indexes on single or multiple columns. You should not create duplicate user-defined
indexes on the same column sets covered by constraints. This would result in unnecessary memory and speed
overheads. See the discussion in the Deployment Guide chapter for more information.

Indexes are crucial for adequate query speed. When range or equality conditionsareused e.qg. SELECT ... WHERE
acol > 10 AND bcol = 0, anindex should exist on one of the columns that has a condition. In this example,
thebcol columnisthe best candidate. HyperSQL always uses the best condition and index. If there are two indexes,
one on acol, and another on bcol, it will choose the index on bcol.

Queries aways return results whether indexes exist or not, but they return much faster when an index exists. Asarule
of thumb, HSQL DB is capable of internal processing of queries at over 100,000 rows per second. Any query that runs
into several secondsis clearly accessing thousands of rows. The query should be checked and indexes should be added
to the relevant columns of the tables if necessary. The EXPLAI N PLAN FOR <quer y> statement can be used to
see which indexes are used to process the query.

When executing aDELETE or UPDATE statement, the engine needs to find the rows that are to be del eted or updated.
If there is an index on one of the columns in the WHERE clause, it is often possible to start directly from the first
candidate row. Otherwise all the rows of the table have to be examined.

Indexes are even more important in joins between multipletables. SELECT ... FROMt1l JONt2 ONtl.cl
= t2.c2 ispeformed by taking rows of t1 one by one and finding a matching row in t2. If there is no index on
t2.c2 then for each row of t1, al the rows of t2 must be checked. Whereas with an index, amatching row can be found
in a fraction of the time. If the query also has a conditionontl, eg., SELECT ... FROM t1l JON t2 ON
tl.cl = t2.¢c2 WHERE t1.c3 = 4 then anindex on t1.c3 would eliminate the need for checking all the
rows of t1 one by one, and will reduce query time to less than a millisecond per returned row. So if t1 and t2 each
contain 10,000 rows, the query without indexes involves checking 100,000,000 row combinations. With an index on

29

HyperS@L SQL Language

t2.c2, thisis reduced to 10,000 row checks and index lookups. With the additional index on t2.c2, only about 4 rows
are checked to get the first result row.

Note that in HSQLDB an index on multiple columns can be used internally as a non-unique index on the first column
in the list. For example: CONSTRAI NT nanel UNIQUE (cl, c2, c3); meansthereisthe equivalent of
CREATE | NDEX nane2 ON atabl e(cl); . Soyou do not need to specify an extraindex if you require one
on the first column of the list.

In HyperSQL 2, amulti-column index will speed up queries that contain joins or values on the first n columns of the
index. Y ou need NOT declare additional individual indexes on those columns unless you use queries that search only
on a subset of the columns. For example, rows of atable that hasa PRIMARY KEY or UNIQUE constraint on three
columns or simply an ordinary index on those columns can be found efficiently when values for all three columns, or
the first two columns, or the first column, are specified in the WHERE clause. For example, SELECT ... FROM
tl1 WHERE t1.¢c1 =4 ANDt1.c2 = 6 ANDt1.c3 = 8 willuseanindexont 1(c1, c2, c3) if itexists.

A multi-columnindex will not speed up queries on the second or third column only. Thefirst column must be specified
inthe JOIN .. ON or WHERE conditions.

Sometimes query speed depends on the order of thetablesin the JOIN .. ON or FROM clauses. For exampl e the second
guery below should be faster with large tables (provided thereisan index on TB. COL3). Thereasonisthat TB. COL3
can be evaluated very quickly if it appliesto the first table (and thereis an index on TB. COL3):

-- TBis a very large table with only a few rows where TB.COL3 = 4

SELECT * FROM TA JO N TB ON TA COL1
SELECT * FROM TB JO N TA ON TA COL1

TB. COL2 AND TB. COL3
TB. COL2 AND TB. COL3

Thegeneral ruleisto put first thetabl e that hasanarrowing condition on one of its columns. In certain cases, HyperSQL
2.2.x reordersthejoined tables if it is obvious that this will introduce a narrowing condition.

HyperSQL features automatic, on-the-fly indexes for views and subselects that are used in a query.
Indexes are used when a LIKE condition searches from the start of the string.

Indexes are used for ORDER BY clauses if the same index is used for selection and ordering of rows. It is possible
to force the use of index for ORDER BY.

Query Processing and Optimisation

HyperSQL 2.3.x changes the order of tablesin a query in order to optimise processing. This happens only when one
of the tables has a narrowing condition and reordering does not change the result of the query.

Indexes and Conditions

HyperSQL optimises queries to use indexes, for al types of range and equality conditions, including IS NULL and
NOT NULL conditions. Conditions can bein join or WHERE clauses, including all types of joins.

In addition, HyperSQL will use an index (if one exists) for IN conditions, whether constants, variable, or subqueries
are used on the right hand side of the IN predicate. Multicolumn IN conditions can aso use an index.

HyperSQL can always use indexes when several conditions are combined with the AND operator, choosing a
conditions which can use an index. This now extended to al equality conditions on multiple columns that are part
of an index.

HyperSQL will also use indexes when several conditions are combined with the OR operator and each condition can
use an index (each condition may use a different index). For example, if a huge table has two separate columns for

30

HyperS@L SQL Language

first name and last name, and both columns are indexed, a query such as the following example will use the indexes
and complete in ashort time:

-- TCis a very large table

SELECT * FROM TC WHERE TC. FI RSTNAME = ' John' OR TC. LASTNAME = 'Smith' OR TC. LASTNAME =
"WIlians'

Each subquery is considered a separate SELECT statement and uses indexes when they are available.

In each SELECT statement, at least one index per table can be used if there is a query conditions that can use the
index. When conditions on a table are combined with the OR operator, and each condition can use an index, multiple
indexes per table are used.

Indexes and Operations

HyperSQL optimises simple row count queriesin the form of SELECT COUNT(*) FROM <t abl e> and returns
the result immediately (this optimisation does not take placein MV CC mode).

HyperSQL can use an index on a column for SELECT MAX(<col utmm>) FROM <t abl e> and SELECT
M N(<col utm>) FROM <t abl e> queries. There should be an index on the <column> and the query can have a
WHERE condition on the same column. In the example below the maximum value for the TB.COL 3 below 1000000
is returned.

‘ SELECT MAX(TB. COL3) FROM TB WHERE TB. COL < 1000000 ‘

HyperSQL can use an index for simple queries containing DISTINCT or GROUP BY to avoid checking all the rows
of the table. Note that indexes are always used if the query has a condition, regardiess of the use of DISTINCT or
GROUP BY. This particular optimisation applies to cases in which all the columns in the SELECT list are from the
same table and are covered by asingle index, and any join or query condition uses thisindex.

For example, with the large table below, aDISTINCT or GROUP BY query to return al thelast names, can use an the
index on the TC.LASTNAME column. Similarly, a GROUP BY query on two columns can use an index that covers
the two columns.

-- TCis a very large table

SELECT DI STI NCT LASTNAME FROM TC WHERE TC. LASTNAME > ' F'
SELECT STATE, LASTNAME FROM TC GROUP BY STATE, LASTNAME

Indexes and ORDER BY, OFFSET and LIMIT

HyperSQL can use an index on an ORDER BY clause if all the columns in ORDER BY are in a single-column or
multi-column index (in the exact order). Thisisimportant if thereisaLIMIT n (or FETCH n ROWS ONLY) clause.
In this situation, the use of index allows the query processor to access only the number of rows specified inthe LIMIT
clause, instead of building the whole result set, which can be huge. This also worksfor joined tableswhen the ORDER
BY clauseison the columns of the first tablein ajoin. Indexes are used in the same way when ORDER BY ... DESC
is specified in the query. Note that unlike some other RDBMS, HyperSQL does not need or create DESC indexes. It
can use any ordinary, ascending index for ORDER BY ... DESC.

If there is an equality or range condition (e.g. EQUALS, GREATER THAN) condition on the columns specified in
the ORDER BY clause, theindex is still used.

In the two examples below, the index on TA.COL 3 is used and only up to 1000 rows are processed and returned.

\—— TA is a very large table with an index on TA COL3 \

31

HyperS@L SQL Language

SELECT * FROM TA JO N TB ON TA COL2
SELECT * FROM TA JO N TB ON TA COL2
BY TA.COL3 DESC LIM T 1000;

TB. COL1 WHERE TA. COL3 > 40000 ORDER BY TA.COL3 LIM T 1000;
TB. COL1 WHERE TA. COL3 > 40000 AND TA. COL3 < 100000 ORDER

But if the query contains an equality condition on another indexed column in the table, this may take precedence and
no index may be used for ORDER BY. In this case USING INDEX can be added to the end of the query to force the
use of theindex for the LIMIT operation. In the example below thereisan index on TA.COL 1 aswell asthe index on
TA.COL3. Normally the index on TA.COL1 is used, but the USING INDEX hint results in the index on TB.COL3
to be used for selecting the first 1000 rows.

-- TAis a very large table with an index on TA. COL3 and a separate index on TA COL1

SELECT * FROM TA JON TB ON TA. COL2 = TB. COL1 WHERE TA. COL1 = ' SENT' AND TB. COL3 > 40000 ORDER
BY TB. COL3 LIM T 1000 USI NG | NDEX;

32

HyperS@L

Chapter 3. Sessions and Transactions

Fred Toussi, The HSQL Development Group
$Revision: 5630 $

Copyright 2010-2016 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2016-05-15 15:57:21-0400

Overview

All SQL statements are executed in sessions. When a connection is established to the database, a session is started.
The authorization of the session isthe name of the user that started the session. A session has several properties. These
properties are set by default at the start according to database settings.

SQL Statements are generaly transactional statements. When a transactional statement is executed, it starts a
transaction if no transaction is in progress. If SQL Data (data stored in tables) is modified during a transaction, the
change can be undone with a ROLLBACK statement. When a COMMIT or ROLLBACK statement is executed, the
transaction is ended. Each SQL statement works atomically: it either succeeds or fails without changing any data. If
asingle statement fails, an error is raised but the transaction is not normally terminated. However, some failures are
caused by execution of statements that are in conflict with statements executed in other concurrent sessions. Such
failures result in an implicit ROLLBACK, in addition to the exception that is raised.

Schema definition and manipulation statements are also transactional according to the SQL Standard. HyperSQL 2.3
performs automatic commits before and after the execution of such transactions. Therefore, schema-related statements
cannot berolled back. Thisislikely to changein future versions.

Some statements are not transactional. Most of these statements are used to change the properties of the session. These
statements begin with the SET keyword.

If the AUTOCOMMIT property of a session is TRUE, then each transactional statement is followed by an implicit
COMMIT.

The default isolation level for a session is READ COMMITTED. This can be changed using the JDBC
j ava. sgl . Connecti on object and its set Tr ansact i onl sol ati on(int | evel) method. The session
can be put in read-only mode using the set ReadOnl y(bool ean readOnl y) method. Both methods can be
invoked only after acommit or arollback, but not during a transaction.

Theisolation level and / or the readonly mode of atransaction can also be modified using an SQL statement. Y ou can
use the statement to change only the isolation mode, only the read-only mode, or both at the sametime. This statement
can be issued only before atransaction starts or after a commit or rollback.

SET TRANSACTION <transaction characteristic> | <coma> <transaction
characteristic>]

This statement is described in detail later in this chapter.

Session Attributes and Variables

Each session has several system attributes. A session can also have user-defined session variables.

33

HyperS@L Sessions and Transactions

Session Attributes

The system attributes reflect the current mode of operation for the session. These attributes can be accessed with
function calls and can be referenced in queries. For example, they can be returned using the VALUES <attri bute
function>, ... statement.

The named attributes such as CURRENT_USER, CURRENT_SCHEMA, etc. are SQL Standard functions. Other
attributes of the session, such as auto-commit or read-only modes can be read using other built-in functions. All these
functions are listed in the Built In Functions chapter.

Session Variables

Session variables are user-defined variables created the same way asthe variablesfor stored procedures and functions.
Currently, these variables cannot be used in general SQL statements. They can be assigned to IN, INOUT and OUT
parameters of stored procedures. This allows calling stored procedures which have INOUT or OUT arguments and
is useful for development and debugging. See the example in the SQL-Invoked Routines chapter, under Formal
Parameters.

Example 3.1. User-defined Session Variables

DECLARE counter | NTEGER DEFAULT 3;
DECLARE result VARCHAR(20) DEFAULT NULL;
SET count er =15;

CALL nyroutine(counter, result)

Session Tables

With necessary access privileges, sessions can access al table, including GLOBAL TEMPORARY tables, that are
defined in schemas. Although GLOBAL TEMPORARY tables have a single name and definition which appliesto all
sessions that use them, the contents of the tables are different for each session. The contents are cleared either at the
end of each transaction or when the session is closed.

Session tables are different because their definition isvisible only within the session that definesatable. The definition
is dropped when the onisclosed. Session tables do not belong to schemas.

<tenporary table declaration> ::= DECLARE LOCAL TEMPORARY TABLE <table nane>
<table element list>] ON COWM T { PRESERVE | DELETE } RO\S]

The syntax for declaration is based on the SQL Standard. A session table cannot have FOREIGN KEY constraints,
but it can have PRIMARY KEY, UNIQUE or CHECK constraints. A session table definition cannot be modified by
adding or removing columns, indexes, etc.

Itis possibleto refer to a session table using its name, which takes precedence over a schematable of the same name.
To distinguish a session table from schema tables, the pseudo schema names, MODULE or SESSION can be used.
An example is given below:

Example 3.2. User-defined Temporary Session Tables

DECLARE LOCAL TEMPORARY TABLE buffer (id |INTEGER PRI MARY KEY, textdata VARCHAR(100)) ON COW T
PRESERVE ROWNS

I NSERT | NTO nodul e. buf fer SELECT id, firstnane || ' ' || |astnane FROM custoners

-- do sone nore work

DROP TABLE nodul e. buf fer

-- or use alternative pseudo schema nane

DROP TABLE sessi on. buf fer

HyperS@L Sessions and Transactions

Session tables can be created inside a transaction. Automatic indexes are created and used on session tables when
necessary for a query or other statement. By default, session table data is held in memory. This can be changed with
the SET SESSI ON RESULT MEMORY ROWS statement.

Transactions and Concurrency Control

HyperSQL 2 has been fully redesigned to support different transaction isolation models. It no longer supports the old
1.8.x model with "dirty read". Although it is perfectly possible to add an implementation of the transaction manager
that supports the legacy model, we thought this is no longer necessary. The new system allows you to select the
transaction isolation model while the engine is running. It also alows you to choose different isolation levels for
different simultaneous sessions.

HyperSQL 2 supports three concurrency control models: two-phase-locking (2PL), which is the default, multiversion
concurrency control (MVCC) and a hybrid model, which is 2PL plus multiversion rows (MVLOCKS). Within
each model, it supports some of the 4 standard levels of transaction isolation: READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ and SERIALIZABLE. The concurrency control model is a strategy that
governsall the sessionsand is set for the database, as opposed for individual sessions. Theisolation level isaproperty
of each SQL session, so different sessions can have different isolation levels. In the new implementation, all isolation
levels avoid the "dirty read" phenomenon and do not read uncommitted changes made to rows by other transactions.

HyperSQL is fully multi threaded in all transaction models. Sessions continue to work simultaneously and can fully
utilise multi-core processors.

The concurrency control model of alive database can be changed. The SET DATABASE TRANSACTI ON CONTROL
{ LOCKS | MVLOCKS | MVCC } canbe used by auser with the DBA role.

Two Phase Locking

The two-phase locking model is the default mode. It is referred to by the keyword, LOCKS. In the 2PL model, each
tablethat isread by atransaction islocked with ashared lock (read lock), and each table that iswritten to islocked with
an exclusive lock (write lock). If two sessions read and modify different tables then both go through simultaneously.
If one session triesto lock atable that has been locked by the other, if both locks are shared locks, it will go ahead. If
either of the locksis an exclusive lock, the engine will put the session in wait until the other session commits or rolls
back its transaction. The engine will throw an error if the action would result in deadlock.

HyperSQL also supports explicit locking of a group of tables for the duration of the current transaction. Use of this
command blocks accessto thelocked tablesby other sessionsand ensuresthe current session can complete theintended
reads and writes on the locked tables.

If atableisread-only, it will not be locked by any transaction.

The READ UNCOMMITTED isolation level can be used in 2PL modes for read-only operations. It is the same as
READ COMMITTED plusread only.

The READ COMMITTED isolation level is the default. It keeps write locks on tables until commit, but releases the
read locks after each operation.

The REPEATABLE READ level is upgraded to SERIALIZABLE. These levels keep both read and write locks on
tables until commit.

It is possible to perform some critical operations at the SERIALIZABLE level, while the rest of the operations are
performed at the READ COMMITTED level.

Note: two phase locking refers to two periods in the life of atransaction. In the first period, locks are acquired, in the
second period locks are released. No new lock is acquired after releasing alock.

35

HyperS@L Sessions and Transactions

Two Phase Locking with Snapshot Isolation

Thismodel isreferred to asMVLOCKS. It works the same way as normal 2PL as far as updates are concerned.

SNAPSHOT ISOLATION isamultiversion concurrency strategy which uses the snapshot of the whole database at the
time of the start of the transaction. In this model, read only transactions use SNAPSHOT ISOLATION. While other
sessions are busy changing the database, the read only session sees a consistent view of the database and can access
all the tables even when they are locked by other sessions for updates.

There are many applications for this mode of operation. In heavily updated data sets, this mode allows uninterrupted
read access to the data.

Lock Contention in 2PL

When multiple connections are used to access the database, the transaction manager controls their activities. When
each transaction performs only reads or writes on asingle table, there is no contention. Each transaction waits until it
can obtain alock then performs the operation and commits. Contentions occur when transactions perform reads and
writes on more than one table, or perform aread, followed by awrite, on the same table.

For example, when sessions are working at the SERIALIZABLE level, when multiple sessions first read from atable
in order to check if arow exists, then insert a row into the same table when it doesn't exist, there will be regular
contention. Transaction A reads from the table, then does Transaction B. Now if either Transaction A or B attempts
to insert a row, it will have to be terminated as the other transaction holds a shared lock on the table. If instead of
two operations, a single MERGE statement is used to perform the read and write, no contention occurs because both
locks are obtained at the sametime.

Alternatively, there is the option of obtaining the necessary locks with an explicit LOCK TABLE statement. This
statement should be executed before other statements and should include the names of al the tables and the locks
needed. After this statement, all the other statements in the transaction can be executed and the transaction committed.
The commit will remove all the locks.

HyperSQL detects deadlocks before attempting to execute a statement. When alock is released after the completion
of the statement, the first transaction that is waiting for the lock is allowed to continue.

HyperSQL is fully multi threaded. It therefore allows different transactions to execute concurrently so long as they
are not waiting to lock the same table for write.

Locks in SQL Routines and Triggers

In both LOCKS and MVLOCKS models, SQL routines (functions and procedures) and triggers obtain all the read
and write locks at the beginning of the routine execution. SQL statements contained in the routine or trigger are all
executed without deadlock as all thelocks have already been obtained. At the end of execution of the routine or trigger,
read locks are released if the session isolation level is READ COMMITTED.

MVCC

In the MV CC model, there are no shared, read locks. Exclusive locks are used on individual rows, but their use
is different. Transactions can read and modify the same table simultaneously, generally without waiting for other
transactions. The SQL Standard isolation levels are used by the user's application, but these isolation levels are
translated to the MV CC isolation levels READ CONSISTENCY or SNAPSHOT ISOLATION.

When transactions are running at READ COMMITTED level, no conflict will normally occur. If a transaction that
runs at this level wants to modify arow that has been modified by another uncommitted transaction, then the engine

36

HyperS@L Sessions and Transactions

puts the transaction in wait, until the other transaction has committed. The transaction then continues automatically.
Thisisolation level is called READ CONSISTENCY.

Deadlock is completely avoided by the engine. The database setting, SET DATABASE TRANSACTION
ROLLBACK ON CONFLICT, determines what happensin case of deadlock. In theory, conflict (deadlock) ispossible
if each transaction iswaiting for adifferent row modified by the other transaction. In this case, one of the transactions
is immediately terminated by rolling back all the previous statements in the transaction in order to allow the other
transaction to continue. If the setting has been changed to FALSE with the <set dat abase transaction
rol I back on conflict statenent>, the session that avoided executing the deadlock-causing statement
returnsan error, but without rolling back the previous statementsin the current transaction. This session should perform
an alternative statement to continue and commit or roll back the transaction. Once the session has committed or rolled
back, the other session can continue. This allows maximum flexibility and compatibility with other database engines
which do not roll back the transaction upon deadlock.

When transactions are running in REPEATABLE READ or SERIALIZABLE isolation levels, conflict is more likely
to happen. There is no difference in operation between these two isolation levels. This isolation level is called
SNAPSHOT ISOLATION.

In this mode, when the duration of two transactions overlaps, if one of the transactions has modified a row and the
second transaction wants to modify the same row, the action of the second transaction will fail. This happens even
if the first transaction has already committed. The engine will invalidate the second transaction and roll back all its
changes. If the setting ischanged to falsewiththe<set dat abase transacti on rol | back on confli ct
st at enent >, then the second transaction will just return an error without rolling back. The application must perform
an aternative statement to continue or roll back the transaction.

Inthe MVCC model, READ UNCOMMITTED ispromoted to READ COMMITTED, asthe new architectureisbased
on multi-version rows for uncommitted data and more than one version may exist for some rows.

With MVCC, when a transaction only reads data, then it will go ahead and complete regardless of what other
transactions may do. This does not depend on the transaction being read-only or the isolation modes.

Choosing the Transaction Model

The SQL Standard defines theisolation levels as modes of operation that avoid the three unwanted phenomena, "dirty
read", "fuzzy read" and "phantom row" during atransaction. The "dirty read" phenomenon occurs when a session can
read changes to a row made by another uncommitted session. The "fuzzy read" phenomenon occurs when a session
reads a row and the row is modified by another session which commits, then the first session reads the row again.
The "phantom row" phenomenon occurs when a session performs an operation that affects several rows, for example,
counts the rows or modifies them using a search condition, then another session adds one or more rows that fulfil
the same search condition and commits, then the first session performs an operation that relies on the results of its
last operation. According to the Standard, the SERIALIZABLE isolation level avoids al three phenomena and also
ensures that all the changes performed during a transaction can be considered as a series of uninterrupted changes to
the database without any other transaction changing the database at al for the duration of these actions. The changes
made by other transactions are considered to occur before the SERIALIZABLE transaction starts, or after it ends. The
READ COMMITTED level avoids "dirty read" only, while the REPEATABLE READ leve avoids "dirty read" and
"fuzzy read", but not "phantom row".

The Standard allowsthe engineto return ahigher isol ation level than requested by the application. HyperSQL promotes
a READ UNCOMMITTED request to READ COMMITTED and promotes a REPEATABLE READ request to
SERIALIZABLE.

The MV CC model is not covered directly by the Standard. Research has established that the READ CONSISTENCY
level fulfilsthe requirements of (and is stronger than) the READ COMMITTED level. The SNAPSHOT ISOLATION
level is stronger than the READ CONSISTENCY level. It avoids the three anomalies defined by the Standard, and
is therefore stronger than the REPEATABLE READ level as defined by the Standard. When operating with the

37

HyperS@L Sessions and Transactions

MV CC model, HyperSQL treatsaREPEATABLE READ or SERIALIZABLE setting for atransaction asSNAPSHOT
ISOLATION.

All modes can be used with as many simultaneous connections as required. The default 2PL model is fine for
applications with a single connection, or applications that do not access the same tables heavily for writes. With
multiple simultaneous connections, MV CC can be used for most applications. Both READ CONSISTENCY and
SNAPSHOT ISOLATION levels are stronger than the corresponding READ COMMITTED level in the 2PL mode.
Some applications require SERIALIZABLE transactions for at least some of their operations. For these applications,
one of the 2PL modes can be used. It is possible to switch the concurrency model while the database is operational.
Therefore, the model can be changed for the duration of some special operations, such as synchronization with another
data source or performing bulk changes to table contents.

All concurrency models are very fast in operation. When data change operations are mainly on the same tables, the
MV CC model may be faster, especially with multi-core processors.

Schema and Database Change

There are a few SQL statements that must access a consistent state of the database during their executions. These
statements, which include CHECKPOINT and BACKUP, put an exclusive lock on all the tables of the database when
they start.

Some schema mani pul ation statements put an exclusive lock on one or more tables. For example changing the columns
of atable locks the table exclusively.

In the MVCC model, all statements that need an exclusive lock on one or more tables, put an exclusive lock on the
database catal og until they complete.

The effect of these exclusive locks is similar to the execution of data manipulation statements with write locks. The
session that is about to execute the schema change statement waits until no other session is holding alock on any of
the objects. At this point it starts its operation and locks the objects to prevents any other session from accessing the
locked aobjects. As soon as the operation is complete, the locks are all removed.

Simultaneous Access to Tables

It was mentioned that there is no limit on the number of sessions that can access the tables and all sessions work
simultaneously in multi threaded execution. However there are internal resourcesthat are shared. Simultaneous access
to these resources can reduce the overall efficiency of the system. MEMORY and TEXT tables do not share resources
and do not block multi threaded access. With CACHED tables, each row change operation blocks the file and its
cache momentarily until the operationisfinished. Thisisdone separately for each row, therefore amulti-row INSERT,
UPDATE, or DELETE statement will allow other sessions to access the file during its execution. With CACHED
tables, SELECT operations do not block each other, but selecting from different tables and different parts of alarge
table causes the row cache to be updated frequently and will reduce overall performance.

The new access pattern is the opposite of the access pattern of version 1.8.x. In the old version, even when 20 sessions
are actively reading and writing, only asingle session at atime performs an SQL statement compl etely, before the next
session is allowed access. In the new version, while a session is performing a SELECT statement and reading rows
of a CACHED table to build a result set, another session may perform an UPDATE statement that reads and writes
rows of the same table. The two operations are performed without any conflict, but the row cache is updated more
frequently than when one operation is performed after the other operation has finished.

Viewing Sessions

As HyperSQL is multithreaded, you can view the current sessions and their state from any admin session. The
| NFORVATI ON_SCHEMA. SYSTEM SESSI ONS table contains the list of open sessions, their unique ids and the

38

HyperS@L Sessions and Transactions

statement currently executed or waiting to be executed by each session. For each session, it displaysthelist of sessions
that are waiting for it to commit, or the session that this session iswaiting for.

Session and Transaction Control Statements

ALTER SESSION
alter session statement

<alter session statement> ::= ALTER SESSI ON <nuneric literal> { CLOSE | RELEASE
| END STATEMENT}

The<alter session statenent> isused by an administrator to close another session or to rollback the
transaction in another session. This statement is different from the other statements discussed in this chapter asit is
not used for changing the settings of the current session. When END STATEMENT is used, the current statement that
iswaiting to run or being executed is aborted. When RELEASE is used, the current transaction is terminated with a
rollback. The session remains open. CLOSE should be used after REL EASE has compl eted.

The session ID is used as a <nuneric |literal > in this statement. The administrator can use the
| NFORVATI ON_SCHEMA. SYSTEM SESSI ONS table to find the session IDs of other sessions.

<alter current session statenent> ::= ALTER SESSI ON RESET { ALL | RESULT SETS
| TABLE DATA }

The<al ter current session statement>isusedto clear and reset different states of the current session.
When ALL is specified, the current transaction is rolled back, the session settings such as time zone, current schema
etc. are restored to their origina state at the time the session was opened and all open result sets are closed and
temporary tables cleared. When RESULT SETSis specified, al currently open result sets are closed and the resources
arereleased. When TABLE DATA is specified, the datain all temporary tablesis cleared.

SET AUTOCOMMIT
set autocommit command
<set autoconmt statement> ::= SET AUTOCCOWM T { TRUE | FALSE }

When an SQL sessionisstarted by creating aJDBC connection, itisin AUTOCOMMIT mode. Inthismode, after each
SQL statement aCOMMIT is performed automatically. This statement changes the mode. It is equivalent to using the
set Aut oConmi t (bool ean aut oComi t) method of the JDBC Connect i on object.

START TRANSACTION
start transaction statement

<start transaction statement> ::= START TRANSACTION | <transaction
characteristics>]

Start an SQL transaction and set its characteristics. All transactional SQL statements start a transaction automatically,
therefore using this statement is not necessary. If the statement is called in the middle of a transaction, an exception
isthrown.

SET TRANSACTION
set next transaction characteristics

<set transaction statenent> ::= SET [LOCAL] TRANSACTION <transaction
characteristics>

39

HyperS@L Sessions and Transactions

Set the characteristics of the next transaction in the current session. This statement has an effect only on the next
transactions and has no effect on the future transactions after the next.

transaction characteristics

transaction characteristics

<transaction characteristics> ::= [<transaction node> [{ <comma> <transaction
node> }...]]
<transaction nobde> ::= <isolation level> | <transaction access node> |

<di agnostics size>

<transaction access node> ::= READ ONLY | READ WRI TE

<isolation level > ::= | SOLATI ON LEVEL <l evel of isolation>

<l evel of isolation> ::= READ UNCOW TTED | READ COWM TTED | REPEATABLE READ
| SERIALI ZABLE

<di agnostics size> ::= D AGNOSTICS S| ZE <nunber of conditions>

<nunber of conditions> ::= <sinple val ue specification>

Specify transaction characteristics.

Example 3.3. Setting Transaction Characteristics

SET TRANSACTI ON READ ONLY
SET TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE
SET TRANSACTI ON READ WRI TE, | SOLATI ON LEVEL READ COWM TTED

SET CONSTRAINTS
set constraints mode statement

<set constraints npde statement> ::= SET CONSTRAI NTS <constraint nane |ist>
{ DEFERRED | | MVEDI ATE }

<constraint nanme list> ::= ALL | <constraint nanme> [{ <comma> <constraint
nane> }...]

If the statement isissued during atransaction, it appliesto the rest of the current transaction. If the statement isissued
when atransaction is not active then it applies only to the next transaction in the current session. HyperSQL does not
yet support this feature.

LOCK TABLE
lock table statement

<lock table statenent> ::= LOCK TABLE <table name> { READ | WRITE} [, <table
nane> { READ | WRITE} ...]}

In some circumstances, where multiple simultaneous transactions are in progress, it may be necessary to ensure a
transaction consisting of several statements is completed, without being terminated due to possible deadlock. When
this statement is executed, it waits until it can obtain all the listed locks, then returns. If obtaining the locks would
result in adeadlock an error israised. The SQL statements following this statements use the locks already obtained

40

HyperS@L

Sessions and Transactions

(and obtain new locks if necessary) and can proceed without waiting. All the locks are released when a COMMIT or

ROLLBACK statement is issued.

When theisolation level of asessionisREAD COMMITTED, read locks are released immediately after the execution
of the statement, therefore you should use only WRITE locks in this mode. Alternatively, you can switch to the
SERIALIZABLE isolation mode before locking the tables for the specific transaction that needs to finish consistently
and without a deadlock. It is best to execute this statement at the beginning of the transaction with the complete list

of required read and write locks.

Currently, this command does not have any effect when the database transaction control model is MV CC.

Example 3.4. Locking Tables

‘ LOCK TABLE table_a WRITE, table_b READ

SAVEPOINT

savepoint statement

<savepoi nt statenent> ::

<savepoi nt specifier> ::

SAVEPO NT <savepoi nt specifier>

<savepoi nt nane>

Establish a savepoint. This command is used during an SQL transaction. It establishes a milestone for the current
transaction. The SAVEPOINT can be used at alater point in the transaction to rollback the transaction to the milestone.

RELEASE SAVEPOINT

release savepoint statement

<rel ease savepoi nt statement> ::= RELEASE SAVEPO NT <savepoi nt specifier>

Destroy a savepoint. This command israrely used asit is not very useful. It removes a SAVEPOINT that has already

been defined.
COMMIT
commit statement

<commit statenent> ::=

COMT [WRK] [AND[NO] CHAIN]

Terminate the current SQL -transaction with commit. This make all the changes to the database permanent.

ROLLBACK
rollback statement

<rol | back statement> ::

ROLLBACK [WORK] [AND [NO] CHAIN]

Rollback the current SQL transaction and terminate it. The statement rolls back all the actions performed during the
transaction. If NO CHAIN is specified, anew SQL transaction is started just after the rollback. The new transaction
inherits the properties of the old transaction.

ROLLBACK TO SAVEPOINT

rollback statement

41

HyperS@L Sessions and Transactions

<rol | back statenent> ::= ROLLBACK [WORK] TO SAVEPO NT <savepoi nt specifier>

Rollback part of the current SQL transaction and continue the transaction. The statement rolls back all the
actions performed after the specified SAVEPOINT was created. The same effect can be achieved with the
rol | back(Savepoi nt savepoi nt) method of the JDBC Connect i on object.

Example 3.5. Rollback

-- performsome inserts, deletes, etc.

SAVEPO NT A

-- performsone inserts, deletes, selects etc.

ROLLBACK WORK TO SAVEPO NT A

-- all the work after the declaration of SAVEPONT A is rolled back

DISCONNECT

disconnect statement

<di sconnect statement> ::= DI SCONNECT

Terminate the current SQL session. Closing a JDBC connection has the same effect as this command.
SET SESSION CHARACTERISTICS

set session characteristics statement

<set session characteristics statenment> ::= SET SESSI ON CHARACTERI STICS AS
<sessi on characteristic list>

<session characteristic list>::= <session characteristic>][{ <comm> <session
characteristic> }...]

<sessi on characteristic> ::= <session transaction characteristics>

<session transaction characteristics> ::= TRANSACTION <transaction npde>
[{ <comma> <transaction nmode> }...]

Set one or more characteristics for the current SQL -session. This command is used to set the transaction mode for the
session. Thisenduresfor al transactions until the session is closed or the next use of this command. The current read-
only mode can be accessed with the ISREADONLY () function.

Example 3.6. Setting Session Characteristics

SET SESSI ON CHARACTERI STI CS AS TRANSACTI ON READ ONLY
SET SESSI ON CHARACTERI STI CS AS TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE
SET SESSI ON CHARACTERI STI CS AS TRANSACTI ON READ WRI TE, | SOLATI ON LEVEL READ COWM TTED

SET SESSION AUTHORIZATION
set session user identifier statement

<set session user identifier statenent> ::= SET SESSI ON AUTHORI ZATI ON <val ue
speci fication>

Set the SQL -session user identifier. This statement changesthe current user. The user that executes this command must
have the CHANGE_AUTHORIZATION role, or the DBA role. After this statement is executed, all SQL statements

42

HyperS@L Sessions and Transactions

are executed with the privileges of the new user. The current authorisation can be accessed with the CURRENT _USER
and SESSION_USER functions.

Example 3.7. Setting Session Authorization

SET SESSI ON AUTHORI ZATI ON ' FELI X'
SET SESSI ON AUTHORI ZATI ON SESSI ON_USER

SET ROLE

set role statement

<set role statenent> ::= SET ROLE <rol e specification>

<rol e specification> ::= <value specification> | NONE

Set the SQL -session role name and the current role name for the current SQL-session context. The user that executes
this command must have the specified role. If NONE is specified, then the previous CURRENT_ROLE is eliminated.
The effect of this lasts for the lifetime of the session. The current role can be accessed with the CURRENT_ROLE
function.

SET TIME ZONE

set local time zone statement

<set local time zone statenent> ::= SET TIME ZONE <set time zone val ue>
<set tine zone value> ::= <interval value expression> | LOCAL

Set the current default time zone displacement for the current SQL-session. When the session starts, the time zone
displacement is set to the time zone of the client. This command changes the time zone displacement. The effect of
this lasts for the lifetime of the session. If LOCAL is specified, the time zone displacement reverts to the local time
zone of the session.

Example 3.8. Setting Session Time Zone

SET TI ME ZONE LOCAL
SET TI ME ZONE | NTERVAL ' +6: 00' HOUR TO M NUTE

SET CATALOG

set catalog statement
<set catal og statement> ::= SET <catal og nane characteristic>
<cat al og name characteristic> ::= CATALOG <val ue speci fication>

Set the default schema name for unqualified names used in SQL statements that are prepared or executed directly in
the current sessions. Asthereisonly one catalog in the database, only the name of this catalog can be used. The current
catalog can be accessed with the CURRENT_CATALOG function.

SET SCHEMA
set schema statement

<set schema statenent> ::= SET <schema nane characteristic>

43

HyperS@L Sessions and Transactions

<schema nane characteristic> ::= SCHEMA <val ue specification> | <schema nane>

Set the default schema name for unqualified names used in SQL statements that are prepared or executed directly in
the current sessions. The effect of thislastsfor thelifetime of the session. The SQL Standard form requires the schema
name as a single-quoted string. HyperSQL aso alows the use of the identifier for the schema. The current schema
can be accessed with the CURRENT_SCHEMA function.

SET PATH

set path statement

<set path statenent> ::= SET <SQ.-path characteristic>
<SQL-path characteristic> ::= PATH <val ue specification>

Set the SQL-path used to determine the subject routine of routine invocations with unqualified routine names used in
SQL statements that are prepared or executed directly in the current sessions. The effect of this lasts for the lifetime
of the session.

SET MAXROWS
Set max rows statement
<set max rows statenent> ::= SET MAXROAS <unsigned integer literal>

The normal operation of the session has no limit on the number of rows returned from a SELECT statement. This
command set the maximum number of rows of the result returned by executing queries.

This statement has a similar effect to the set MaxRows (i nt nmax) method of the JDBC St at enent interface,
but it affects the results returned from the next statement execution only. After the execution of the next statement,
the MAXROWS limit is removed.

Only zero or positive values can be used with this command. The value overrides any value specified with
set MaxRows (i nt nmax) method of a JDBC statement. The statement SET MAXROAS 0 means no limit.

It is possible to limit the number of rows returned from SELECT statements with the FETCH <n> ROWS ONLY, or
its aternative, LIMIT <n>. Therefore this command is not recommended for general use. The only legitimate use of
this command is for checking and testing queries that may return very large numbers of rows.

SET SESSION RESULT MEMORY ROWS
set session result memory rows statement

<set session result nenory rows statenent> ::= SET SESSI ON RESULT MEMORY ROW\S
<unsi gned integer literal >

By default the session uses memory to build result sets, subquery results and temporary tables. This command sets
the maximum number of rows of the result (and temporary tables) that should be kept in memory. If the row count
of the result or temporary table exceeds the setting, the result is stored on disk. The default is 0, meaning all result
sets are held in memory.

This statement applies to the current session only. The general database setting is:
SET DATABASE DEFAULT RESULT MEMORY ROWS <unsigned integer literal >
SET IGNORECASE

set ignore case statement

HyperS@L Sessions and Transactions

<set ignore case statenent> ::= SET | GNORECASE { TRUE | FALSE }
Thisisalegacy method for creating case-insensitive columns. Still supported but not recommended for use.

Sets the type used for new VARCHAR table columns. By default, character columns in new databases are case-
sensitive. If SET | GNORECASE TRUE is used, all VARCHAR columns in new tables are set to use a collation
that converts strings to uppercase for comparison. In the latest versions of HyperSQL you can specify the collations
for the database and for each column and have some columns case-sensitive and some not, even in the same table.
The collation's strength is used to force case-insensitive comparison. Collations are discussed in the Schemas and
Database Objects chapter.

This statement must be switched before creating tables. Existing tables and their data are not affected.

45

HyperS@L

Chapter 4. Schemas and Database Objects

Fred Toussi, The HSQL Development Group
$Revision: 5576 $

Copyright 2009-2016 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQL Development Group
to distribute this document with or without alterations under the terms of the HSQLDB license.

2016-05-15 15:57:21-0400

Overview

The persistent elements of an SQL environment are database objects. The database consists of catalogs plus
authorizations.

A catalog contains schemas, and schemas contain the objects that contain data or govern the data.

Each catalog contains a special schema called INFORMATION_SCHEMA. This schema is read-only and contains
some views and other schema objects. The views contain lists of all the database objects that exist within the catalog,
plus al authorizations.

Each database object has aname. A nameis an identifier and is unique within its name-space.

Schemas and Schema Objects

In HyperSQL, thereis only one catalog per database. The name of the catalog is PUBLIC. Y ou can rename the catalog
withthe ALTER CATALOG RENAME TOstatement. All schemas belong the this catalog. The catalog name has no
relation to the file name of the database.

Each database has also an internal "unique" name which isautomatically generated when the databaseis created. This
nameis used for event logging. Y ou can also change this unique name.

Schema objects are database objects that contain data or govern or perform operations on data. By definition, each
schema object belongs to a specific schema.

Schema objects can be divided into groups according to their characteristics.

» Some kinds of schema objects can exist independently from other schema object. Other kinds can exist only as an
element of another schema object. These dependent objects are automatically destroyed when the parent object is
dropped.

» Separate name-spacesexistsfor different kinds of schema object. Some name-spaces are shared between two similar
kinds of schema objects.

» There can be dependencies between various schema objects, as a schema object can include references to other
schema objects. These references can cross schema boundaries. Interdependence and cross referencing between
schema objectsis allowed in some circumstances and disallowed in some others.

 Schema objects can be destroyed with the DROP statement. |f dependent schema objects exist, a DROP statement
will succeed only if it has a CASCADE clause. In this case, dependent objects are also destroyed in most cases. In
some cases, such as dropping DOMAIN objects, the dependent objects are not destroyed, but modified to remove
the dependency.

46

HyperS@L Schemas and Database Objects

A new HyperSQL catalog contains an empty schema called PUBLIC. By default, this schema is the initia schema
when anew session is started. New schemas and schema objects can be defined and used in the PUBLIC schema, as
well as any new schemathat is created by the user. Y ou can rename the PUBLIC schema.

HyperSQL allows all schemas to be dropped, except the schema that is the default initial schema for new sessions
(by default, the PUBLIC schema). For this schema, a DROP SCHEMA ... CASCADE statement will succeed but will
result in an empty schema, rather than no schema.

The statements for setting the initial schema for users are described in the Statements for Authorization and Access
Control chapter.

Names and References

The name of a schema object is an <i dent i fi er >. The name belongs to the name-space for the particular kind
of schema object. The name is unique within its name-space. For example, each schema has a separate name-space
for TRIGGER objects.

In addition to the name-spaces in the schema. Each table has a name-space for the names of its columns.

Because a schema object is aways in a schema and a schema aways in a catalog, it is possible, and sometimes
necessary, to qualify the name of the schema object that is being referenced in an SQL statement. This is done
by forming an <i denti fi er chai n>. In some contexts, only asimple <i denti fi er > can be used and the
<identifier chain>isprohibited. While in some other contexts, the use of <i dentifier chain>is
optional. Anidentifier chainisformed by qualifying each object with the name of the object that owns its name-space.
Therefore a column name is prefixed with a table name, a table name is prefixed with a schema name, and a schema
nameis prefixed with a catalog name. A fully qualified column nameisintheform <cat al og nane>. <schenmn
nanme>. <t abl e nanme>. <col umm nane>, likewise, afully qualified sequence nameisintheform <cat al og
nanme>. <schema nane>. <sequence nane>.

HyperSQL extends the SQL standard to allow renaming all database objects. The ALTER ... RENAME TO command
has dlightly different forms depending on the type of object. If an object is referenced in a VIEW or ROUTINE
definition, it is not always possible to renameit.

Character Sets

A CHARACTER SET isthe whole or asubset of the UNICODE character set.
A character set namecan only bea<r egul ar i denti fi er >. Thereisaseparate name-space for character sets.

There are severa predefined character sets. These character sets belong to INFORMATION_SCHEMA. However,
when they are referenced in a statement, no schema prefix is necessary.

The following character sets, together with some others, have been specified by the SQL Standard:
SQL_TEXT, SQL_IDENTIFIER, SQL_CHARACTER

The SQL_CHARACTER consists of ASCI| letters, digits and the symbols used in the SQL language. SQL_TEXT and
SQL_IDENTIFIER are implementation defined. HyperSQL defines SQL_TEXT as the UNICODE character set and
SQL_IDENTIFIER as the UNICODE character set minus the SQL language special characters.

SQL_TEXT consistsof thefull set of Unicode characters. These characters can be used in strings and clobs stored inthe
database. The character repertoire of HyperSQL isthe UTF16 character set, which covers all possible character sets.

If a predefined character set is specified for a table column, then any string stored in the column must contain only
characters from the specified character set. HyperSQL does not enforce the CHARACTER SET that is specified for
acolumn and may accept any character string supported by SQL_TEXT.

47

HyperS@L Schemas and Database Objects

Collations

A COLLATION is the method used for ordering character strings in ordered sets and to determine equivalence of
two character strings.

The system collation is called SQL_TEXT. This collation sorts according to the Unicode code of the characters,
UNICODE_SIMPLE. The system collation is always used for INFORMATION_SCHEMA tables.

The default database collation is the same as the system collation. Y ou can change this default, either with alanguage
collation, or withthe SQL_TEXT_UCC. Thiscollationisacase-insensitiveform of the UNICODE_SIMPLE collation.

Collations for a large number of languages are supported by HyperSQL. These collations belong to
INFORMATION_SCHEMA.. However, when they are referenced in a statement, there is no need for a schema prefix.

A different collation than the default collation can be specified for each table column that is defined as CHAR or
VARCHAR.

A collation can also be used in an ORDER BY clause.

A collation can be used in the GROUP BY clause.

CREATE TABLE t (id | NTEGER PRI MARY KEY, nane VARCHAR(20) COLLATE "English")
SELECT * FROMt ORDER BY nane COLLATE "French"
SELECT COUNT(*), name FROMt GROUP BY name COLLATE "English 0"

In the examples above, the collation for the column is already specified when it is defined. In the first SELECT
statement, the column is sorted using the French collation. In the second SELECT, the " Engl i sh 0" collation is
used in the GROUP BY clause. This collation is case insensitive, so the same name with different uses of upper and
lower case lettersis considered the same and counted together.

The supported collations are named according to the language. You can see the list in the
INFORMATION_SCHEMA.COLLATIONS view. You can use just the name in double quotes for the default form
of the collation. If you add a strength between 0, 1, 2, 3, the case sensitivity and accent sensitivity changes. The value
0 indicates least sensitivity to differences. At this strength the collation is case-insensitive and ignores differences
between accented letters. At strength 1, differences between accented | etters are taken into account. At strength 2, both
case and accent are significant. Finally 3 indicates additional sensitivity to different punctuation. A second parameter
can also be used with values 0 or 1, to indicate how decomposition of accented characters for comparison is handled
for languages that support such characters. See the Java and ICU (International Components for Unicode) collation
documentation for more details on these values. For example, possible forms of the French collation are” Fr ench” ,
"French 0","French 1",etc.and"French 2 1", etc. When the collation is specified without strength, it
seems the system defaults to strength 2, which is case and accent sensitive.

When a collation is not explicitly used in the CREATE TABLE statement for a column, then the database default
collationisused for thiscolumn. If you change the database default collation afterwards, the new collation will be used.

With the older versions of HyperSQL the special type VARCHAR_IGNORECA SE was used as the column type for
case-insensitive comparison. Any column aready defined as VARCHAR_IGNORECASE will be compared exactly
as before. In version 2.3.0 and later, this form is represented by the addition of UCC after the collation name, for
example "French UCC". Y ou can still usethe SET IGNORECASE TRUE statement in your session to force the UCC
to be applied to the collation for the VARCHAR columns of new tables. UCC stands for Upper Case Comparison.
Before comparing two strings, both are converted to uppercase using the current collation. This is exactly how
VARCHAR_IGNORECASE worked.

It is recommended to use the default SQL_TEXT collation for your general CHAR or VARCHAR columns. For
columns where a language collation is desirable, the choice should be made very carefully, because names that are
very similar but only differ in the accents may be considered equal in searches.

48

HyperS@L Schemas and Database Objects

When comparing two strings, HyperSQL 2 pads the shorter string with spaces in order to compare two strings of
equal length. Y ou can change the default database collation with one that does not pad the string with spaces before
comparison. This method of comparison was used in versions older than 2.

User defined collations can be created based on existing collations to control the space padding. These collations are
part of the current schema.

See the COLLATE keyword and SET DATABASE COLLATION statement in the System Management chapter.
The PAD SPACE or NO PAD clauseis used to control padding.

I mportant
!

If you change the default collation of a database when there are tables containing data with CHAR or
VARCHAR columns that are part of an index, a primary key or a unique constraint, you must execute
SHUTDOWN COMPACT or SHUTDOWN SCRIPT after the change. If you do not do this, your queries
and other statements will show erratic behaviour and may result in unrecoverable errors.

Distinct Types

A distinct, user-defined TYPE is simply based on a built-in type. A distinct TYPE is used in table definitions and in
CAST statements.

Distinct types share a name-space with domains.

Domains

A DOMAIN is a user-defined type, simply based on a built-in type. A DOMAIN can have constraints that limit the
values that the DOMAIN can represent. A DOMAIN can be used in table definitions and in CAST statements.

Distinct types share a name-space with domains.

Number Sequences

A SEQUENCE object produces INTEGER valuesin sequence. The SEQUENCE can be referenced in special contexts
only within certain SQL statements. For each row where the object is referenced, its value is incremented.

There is a separate name-space for SEQUENCE objects.

IDENTITY columns are columns of tables which have an internal, unnamed SEQUENCE object. HyperSQL also
supports IDENTITY columns that use a named SEQUENCE object.

SEQUENCE objectsand IDENTITY columns are supported fully according to the latest SQL 2008 Standard syntax.
Sequences

The SQL:2008 syntax and usage is different from what is supported by many existing database engines. Sequences
are created with the CREATE SEQUENCE command and their current value can be modified at any timewith ALTER

SEQUENCE. The next value for a sequence is retrieved with the NEXT VALUE FOR <nane> expression. This
expression can be used for inserting and updating table rows.

Example 4.1. inserting the next sequence valueinto atablerow

‘ I NSERT | NTO nyt abl e VALUES 2, 'John', NEXT VALUE FOR nysequence

49

HyperS@L Schemas and Database Objects

You can also use it in select statements. For example, if you want to number the returned rows of a SELECT in
sequential order, you can use:

Example 4.2. numbering returned rows of a SELECT in sequential order

‘ SELECT NEXT VALUE FOR nysequence, col1l, col2 FROM nytabl e WHERE . ..

In version 2.0, the semantics of sequencesis exactly as defined by SQL:2008. If you use the same sequence twice in
the same row in an INSERT statement, you will get the same value as required by the Standard.

The correct way to use a sequence value isthe NEXT VALUE FOR expression.

HyperSQL adds an extension to Standard SQL to return the last value returned by the NEXT VALUE FOR expression
in the current session. After a statement containing NEXT VALUE FOR is executed, the value that was returned for
NEXT VALUE FOR is available using the CURRENT VALUE FOR expression. In the example below, the NEXT
VALUE FOR expression is used to insert anew row. The value that was returned by NEXT VALUE FOR isretrieved
with the CURRENT VALUE FOR in the next insert statements to popul ate two new rows in a different table that has
a parent child relationship with the first table. For example if the value 15 was returned by the sequence, the same
value 15 isinserted in the three rows.

Example 4.3. using the last value of a sequence

I NSERT | NTO nytabl e VALUES 2, 'John', NEXT VALUE FOR nysequence
I NSERT | NTO chi | dt abl e VALUES 4, CURRENT VALUE FOR nysequence
I NSERT | NTO chi | dt abl e VALUES 5, CURRENT VALUE FOR nysequence

The INFORMATION_SCHEMA.SEQUENCES table contains the next value that will be returned from any of the
defined sequences. The SEQUENCE_NAM E column contains the name and the NEXT_VALUE column contains the
next value to be returned. Note that thisis only for getting information and you should not use it for accessing the next
sequence value. When multiple sessions access the same sequence, the value returned from this table by one session
could also be used by a different session, causing a sequence value to be used twice unintentionally.

I dentity Auto-Increment Columns

Each table can contain a single auto-increment column, known asthe IDENTITY column. AnIDENTITY columnisa
SMALLINT, INTEGER, BIGINT, DECIMAL or NUMERIC columnwithitsvalue generated by asegquence generator.

In HyperSQL 2.0, an IDENTITY column is not by default treated as the primary key for the table (as a result, multi-
column primary keys are possible with an IDENTITY column present). Use the SQL standard syntax for declaration
of the IDENTITY column.

The SQL standard syntax is used, which alows the initial value and other options to be specified.

<col nane> [INTEGER | BIGINT | DECIMAL | NUMERIC | GENERATED { BY DEFAULT |
ALWAYS} AS | DENTITY [(<options>)]

/* this table has no primary key */
CREATE TABLE vals (id | NTEGER GENERATED BY DEFAULT AS | DENTI TY, data VARBI NARY(2000))

/* in this table id becomes primary key because the old syntax is used - avoid this syntax */
CREATE TABLE vals (id I NTEGER | DENTITY, data VARBI NARY(2000))

/* use the standard syntax and explicity declare a primary key identity colum */
CREATE TABLE vals (id | NTEGER GENERATED BY DEFAULT AS | DENTI TY PRI MARY KEY, data
VARBI NARY(2000))

When you add a new row to such atable using an | NSERT | NTO <t abl enane> ... statement, you can use
the DEFAULT keyword for the IDENTITY column, which results in an auto-generated value for the column.

50

HyperS@L Schemas and Database Objects

Thel DENTI TY() function returnsthelast valueinserted into any IDENTITY column by this session. Each session
manages this function call separately and is not affected by inserts in other sessions. Use CALL | DENTI TY() as
an SQL statement to retrieve this value. If you want to use the value for afield in a child table, you can use | NSERT
| NTO <chil dtabl e> VALUES (..., IDENTITY(),...);.Bothtypesof cal to | DENTI TY() must be
made before any additional update or insert statements are issued by the session.

Intriggersand routines, the valuereturned by thel DENTI TY()) functioniscorrect for the given context. For example,
if a call to a stored procedure inserts a row into a table, causing a new identity value to be generated, a call to
| DENTI TY() inside the procedure will return the new identity, but a call outside the procedure will return the last
identity value that was generated before a call was made to the procedure.

Thelast inserted IDENTITY value can also beretrieved via JDBC, by specifying the Statement or PreparedStatement
object to return the generated value.

The next IDENTITY value to be used can be changed with the following statement. Note that this statement is not
used in normal operation and is only for special purposes, for example resetting the identity generator:

‘ ALTER TABLE ALTER COLUWN <col umm name> RESTART W TH <new val ue>; ‘

For backward compatibility, support has been retained for CREATE TABLE <t abl enane>(<col nane>
| DENTI TY, ...) asashortcut which defines the column both as an IDENTITY column and a PRIMARY KEY
column. Also, for backward compatibility, it is possible to use NULL as the value of an IDENTITY column in an
INSERT statement and the value will be generated automatically. Y ou should avoid these compatibility features as
they may be removed from future versions of HyperSQL.

In the following example, the identity value for the first INSERT statement is generated automatically using the
DEFAULT keyword. The second INSERT statement uses acall to the IDENTITY () function to populate arow in the
child table with the generated identity value.

CREATE TABLE star (id | NTEGER GENERATED BY DEFAULT AS | DENTI TY PRI MARY KEY,
firstnane VARCHAR(20),
| ast name VARCHAR(20))
CREATE TABLE novies (starid | NTEGER, novieid | NTEGER PRI MARY KEY, title VARCHAR(40))
I NSERT I NTO star (id, firstnane, |astnane) VALUES (DEFAULT, 'Felix', 'the Cat')
I NSERT | NTO novies (starid, novieid, title) VALUES (IDENTITY(), 10, 'Felix in Hollywood')

HyperSQL 2.1 also supports IDENTITY columnsthat use an external, named SEQUENCE object. Thisfeatureis not
part of the SQL Standard. The example below usesthistype of IDENTITY. Note the use of CURRENT VALUE FOR
seqg here is multi-session safe. The returned value is the last value used by this session when the row was inserted
into the star table. This value is available until the transaction is committed. After commit, NULL is returned by the
CURRENT VALUE FOR expression until the SEQUENCE is used again.

CREATE SEQUENCE seq

CREATE TABLE star (id | NTEGER GENERATED BY DEFAULT AS SEQUENCE seq PRI MARY KEY,
firstnane VARCHAR(20),
| ast name VARCHAR(20))

CREATE TABLE novies (starid |INTEGER novieid | NTEGER PRI MARY KEY, title VARCHAR(40))

I NSERT I NTO star (id, firstname, |astnane) VALUES (DEFAULT, 'Felix', 'the Cat')

I NSERT | NTO novies (starid, novieid, title) VALUES (CURRENT VALUE FOR seq, 10, 'Felix in

Hol | ywood')

Tables

In the SQL environment, tables are the most essential components, as they hold all persistent data.

If TABLE isconsidered as metadata (i.e. without its actual data) itiscalled arelationin relational theory. It hasone or
more columns, with each column having a distinct name and a data type. A table usually has one or more constraints
which limit the values that can potentially be stored inthe TABLE. These constraints are discussed in the next section.

51

HyperS@L Schemas and Database Objects

A single column of the table can be defined as IDENTITY. The values stored in this column are auto-generated and
are based on an (unnamed) identity sequence, or optionally, a named SEQUENCE object.

Views

A VIEW is similar to a TABLE but it does not permanently contain rows of data. A view is defined as a QUERY
EXPRESSION, which is often a SELECT statement that references views and tables, but it can aso consist of a
TABLE CONSTRUCTOR that does not reference any tables or views.

A view has many uses:

« Hide the structure and column names of tables. The view can represent one or more tables or views as a separate
table. This can include aggregate data, such as sums and averages, from other tables.

» Allow access to specific rows in atable. For example, allow access to records that were added since a given date,
while hiding older records.

» Allow accessto specific columns. For example allow access to columns that contain non-confidential information.
Note that this can also be achieved with the GRANT SELECT statement, using column-level privileges

A VIEW that returns the columns of asingle ordinary TABLE is updatable if the query expression of the view is an
updatable query expression asdiscussed inthe Data A ccessand Change chapter. Some updatableviewsareinsertabl e-
into because the query expression is insertable-into. In these views, each column of the query expressions must be a
column of the underlying table and those columns of the underlying table that are not in the view must have a default
clause, or bean IDENTITY or GENERATED column. When rows of an updatable view are updated, or new rows are
inserted, or rows are deleted, these changes are reflected in the base table. A VIEW definition may specify that the
inserted or updated rows conform to the search condition of the view. Thisis done with the CHECK OPTION clause.

A view that is not updatable according to the above paragraph can be made updatable or insertable-into by adding
INSTEAD OF triggersto the view. These triggers contain statements to use the submitted data to modify the contents
of the underlying tables of the view separately. For example, aview that represents a SELECT statements that joins
two tables can have an INSTEAD OF DELETE trigger with two DELETE statements, one for each table. Views that
have an INSTEAD OF trigger are called TRIGGER INSERTABLE, TRIGGER UPDATABLE, etc. according to the
triggers that have been defined.

Views share a name-space with tables.

Constraints

A CONSTRAINT isachild schema object and can belongtoaDOMAIN or aTABLE. CONSTRAINT objects can be
defined without specifying aname. In this case the system generates anamefor the new object beginningwith"SYS ".

InaDOMAIN, CHECK constraints can be defined that limitsthe value represented by the DOMAIN. These constraints
work exactly like a CHECK constraint on a single column of atable as described below.

InaTABLE, aconstraint takes three basic forms.

CHECK

A CHECK constraint consists of a<sear ch condi ti on> that must not be false (can be unknown) for each row
of the table. The <sear ch condi ti on> can reference al the columns of the current row, and if it contains a

<subquer y>, other tables and views in the database (excluding its own table).

NOT NULL

52

HyperS@L Schemas and Database Objects

A simple form of check constraint isthe NOT NULL constraint, which applies to asingle column.
UNIQUE

A UNIQUE constraint is based on an equality comparison of values of specific columns (taken together) of one row
with the same values from each of the other rows. The result of the comparison must never be true (can be false or
unknown). If arow of the table has NULL in any of the columns of the constraint, it conforms to the constraint. A
unique constraint on multiple columns (c1, c2, ¢3, ..) meansthat in no two rows, the sets of values for the columns can
be equal unless at lease one of them is NULL. Each single column taken by itself can have repeat values in different
rows. The following example satisfies a UNIQUE constraint on the two columns

Example 4.4. Column values which satisfy a 2-column UNIQUE constraint

1, 2
2, 1
2, 2
NULL, 1
NULL, 1
1, NULL
NULL, NULL
NULL, NULL

If the SET DATABASE SQL UNIQUE NULLSFAL SE has been set, then if not all the values set of columnsare null,
the not null values are compared and it is disallowed to insert identical rows that contain at least one not-null value.

PRIMARY KEY

A PRIMARY KEY constraint is equivalent to a UNIQUE constraint on one or more NOT NULL columns. Only one
PRIMARY KEY can be defined in each table.

FOREIGN KEY

A FOREIGN key constraint is based on an equality comparison between values of specific columns (taken together)
of each row with the values of the columns of a UNIQUE constraint on another table or the same table. The result
of the comparison must never be false (can be unknown). A specia form of FOREIGN KEY constraint, based on its
CHECK clause, allows the result to be unknown only if the values for al columns are NULL. A FOREIGN key can
be declared only if a UNIQUE constraint exists on the referenced columns.

Constraints share a name space with assertions.

Assertions

An ASSERTION isatop-level schema objects. It consists of a<sear ch condi ti on> that must not be false (can
be unknown). HyperSQL does not yet support assertions.

Assertions share a hame-space with constraints

Triggers

A TRIGGER is achild schema object that always belongsto a TABLE or aVIEW.

Each time a DELETE, UPDATE or INSERT is performed on the table or view, additional actions are taken by the
triggers that have been declared on the table or view.

Triggers are discussed in detail in Triggers chapter.

53

HyperS@L Schemas and Database Objects

Routines

Routines are user-defined functions or procedures. The names and usage of functions and procedures are different.
FUNCTION is aroutine that can be referenced in many types of statements. PROCEDURE is a routine that can be
referenced only in a CALL statement.

There is a separate name-space for routines.

Because of the possibility of overloading, each routine can have more than one name. The name of the routine is
the same for all overloaded variants, but each variant has a specific name, different from all other routine names and
specific names in the schema. The specific name can be specified in the routine definition statement. Otherwise it is
assigned by the engine. The specific nameis used only for schema manipulation statements, which need to reference a
specific variant of the routine. For example, if aroutine has two signatures, each signature has its own specific name.
This allows the user to drop one of the signatures while keeping the other.

Routines are discussed in detail in chapter SQL-Invoked Routines .

Indexes

Indexes are an implementation-defined extension to the SQL Standard. HyperSQL has a dedicated name-space for
indexes in each schema.

Synonyms

Synonyms are user-defined names that refer to other schema objects. Synonyms can be defined for TABLE, VIEW,
SEQUENCE, PROCEDURE and FUNCTION names and used in SELECT, UPDATE, CALL, etc. statements. They
cannot be used in DDL statements. Synonym are in schemas, but they are used without a schemaqualifier. When used,
asynonym isimmediately translated to the target name and the target name is used in the actual statement. The access
privileges to the target object are checked.

CREATE SYNONYM REG FOR OTHER_SCHEMA. REG STRATI ON_DETAI L_TABLE

SELECT R I D, R _DATE FROM REG WHERE R _DATA > CURRENT_DATE - 3 DAY

A synonym cannot be the same as the name of any existing object in the schema.

Statements for Schema Definition and Manipulation

Schemas and schema objects can be created, modified and dropped. The SQL Standard defines arange of statements
for this purpose. HyperSQL supports many additional statements, especially for changing the properties of existing
schema objects.

Common Elements and Statements

These elements and statements are used for different types of object. They are described here, before the statements
that can use them.

identifier
definition of identifier

<identifier> ::= <regular identifier>| <delimted identifier>| <SQ |anguage
identifier>

<delimted identifier> ::= <doubl e quote> <character sequence> <doubl e quot e>

54

HyperS@L Schemas and Database Objects

<regul ar identifier> ::= <special character sequence>
<SQ. | anguage identifier> ::= <special character sequence>

A<delimted identifier>isasequence of characters enclosed with double-quote symbols. All characters
are allowed in the character sequence.

A <regul ar identifier>isaspecia sequence of characters. It consists of letters, digits and the underscore
characters. It must begin with aletter. All the letters are trandlated to their upper-case version.

The database setting, SET DATABASE SQL REGULAR NAMES FALSE can be used to relax the rules for regular
identifier. With this setting, an underscore character can appear at the start of the regular identifier, and the dollar sign
character can be used in the identifier.

A <SQL | anguage i dentifier>issimilarto<regul ar identifi er> buttheletterscanrangeonly from
A-Z inthe ASCII character set. Thistype of identifier is used for names of CHARACTER SET objects.

If the character sequence of a delimited identifier is the same as an undelimited identifier, it represents the same
identifier. For example "JOHN" is the same identifier as JOHN. Ina<r egul ar i denti fi er > the case-norma
formis considered for comparison. Thisform consists of the upper-case equivaent of all the letters. When a database
object is created with one of the CREATE statements or renamed with the ALTER statement, if the nameis enclosed
in double quotes, the exact name is used as the case-normal form. But if it is not enclosed in double quotes, the name
is converted to uppercase and this uppercase version is stored in the database as the case-normal form.

The character sequence length of al identifiers must be between 1 and 128 characters.

A reserved word is one that is used by the SQL Standard for specia purposes. It is similar to a <r egul ar
i denti fi er> butit cannot be used as an identifier for user objects. If areserved word is enclosed in double quote
characters, it becomes a quoted identifier and can be used for database objects.

Case sengitivity rulesfor identifiers can be described simply as follows:

« al parts of SQL statements are converted to upper case before processing, except identifiers in double quotes and
strings in single quotes

* identifiers, both unquoted and double quoted, are then treated as case-sensitive

» most database engines follow the same rule, except, in some respects, MySQL and MS SQL Server.

CASCADE or RESTRICT
drop behavior
<drop behavior> ::= CASCADE | RESTRICT

The <drop behavi or > isarequired element of statements that drop a SCHEMA or a schema object. If <dr op
behavi or > is not specified then RESTRI CT isimplicit. It determines the effect of the statement if there are other
objects in the catalog that reference the SCHEMA or the schema object. If RESTRICT is specified, the statement
failsif there are referencing objects. If CASCADE is specified, all the referencing objects are modified or dropped
with cascading effect. Whether a referencing object is modified or dropped, depends on the kind of schema object
that is dropped.

IFEXISTS

drop condition (Hyper SQL)

55

HyperS@L Schemas and Database Objects

<if exists clause> ::= |F EXI STS

Thisclauseisnot part of the SQL standard andisaHyperSQL extension to some commandsthat drop objects (schemas,
tables, views, sequences and indexes). If it is specified, then the statement does not return an error if the drop statement
isissued on a hon-existent object.

IF NOT EXISTS
create condition (HyperSQL)
<if not exists clause> ::=1F NOT EXI STS

This clause is not part of the SQL standard and is a HyperSQL extension to CREATE statements that create tables,
views, sequences and indexes, aswell as ALTER TABLE ... ADD CONSTRAINT statements. If it is specified, then
the statement does not return an error if the create statement is for an object name that already exists.

SPECIFIC

specific routine designator

<specific routine designator> ::= SPECI FIC <routine type> <specific nane>
<routine type> ::= ROUTINE | FUNCTI ON | PROCEDURE

This clause is used in statements that need to specify one of the multiple versions of an overloaded routine. The
<speci fi c name> isthe one specified in the <r out i ne defi ni ti on> statement. The keyword ROUTI NE
can be used instead of either FUNCTI ON or PROCEDURE.

Renaming Objects

RENAME

rename statement (Hyper SQL)

<rename statement> ::= ALTER <object type> <nane> RENAME TO <new nane>

<obj ect type> ::= CATALOG | SCHEMA | DOVAIN | TYPE | TABLE | CONSTRAINT | | NDEX

| ROUTINE | SPECIFI C ROUTI NE

<colum renane statement> ::= ALTER TABLE <table name> ALTER COLUWN <nane>
RENAME TO <new nane>

This statement is used to rename an existing object. It is not part of the SQL Standard. The specified <name> isthe
existing name, which can be qualified with a schema name, while the <new nane> isthe new name for the object.

Commenting Objects
COMMENT

comment statement (Hyper SQL)

<comment statement> ::= COMMENT ON { TABLE | COLUW | RQUTINE } <nanme> IS
<character string literal >

Adds a comment to the object metadata, which can later be read from an INFORMATION_SCHEMA view. This
command is not part of the SQL Standard. The strange syntax is due to compatibility with other database engines

56

HyperS@L Schemas and Database Objects

that support the statement. The <nane> is the name of atable, view, column or routine. The name of the column
consists of dot-separated <t abl e nane> . <col unm nane>. The name of the table, view or routine can be
asimple name. All names can be qualified with a schemaname. If there is already a comment on the object, the new
comment will replaceit.

The comments appear in the results returned by JDBC DatabaseMetaData methods, get Tabl es() and
get Col ums() . The | NFORMATI ON_SCHEMA. SYSTEM COWMENTS view contains the comments. You can
query this view using the schema, table, and column names to retrieve the comments.

Schema Creation

CREATE SCHEMA
schema definition

The CREATE_SCHEMA or DBA roleisrequired in order to create a schema. A schema can be created with or without
schema objects. Schema objects can always be added after creating the schema, or existing ones can be dropped.
Within the <schera defi ni ti on> statement, all schema object creation takes place inside the newly created
schema. Therefore, if aschemanameis specified for the schema objects, the name must match that of the new schema.
In addition to statements for creating schema objects, the statement can include instances of <gr ant st at enent >
and <rol e definition>. Thisisa curious aspect of the SQL standard, as these elements do not really belong
to schema creation.

<schema definition> ::= CREATE SCHEMA <schenma nane cl ause> [<schema character
set specification>] [<schenma elenent>...]
<schemm nane cl ause> :: = <schenm nane> | AUTHORI ZATI ON <aut hori zation identifier>

| <schema nanme> AUTHORI ZATI ON <aut hori zation identifier>

If the name of the schemalis specified simply as<schema nane>, then the AUTHORIZATION isthe current user.
Otherwise, the specified <aut hori zati on identifier>isusedasthe AUTHORIZATION for the schema.
If <schema nane> is omitted, then the name of the schema is the same as the specified <aut hori zati on
identifier>.

<schemn el ement> :: = <tabl e definition>| <viewdefinition>| <domain definition>
| <character set definition> | <collation definition> | <transliteration
definition> | <assertion definition> | <trigger definition> | <user-defined
type definition> | <user-defined cast definition> | <user-defined ordering

definition> | <transform definition> | <schema routine> | <sequence generator
definition> | <grant statement> | <role definition>

An example of the statement is given below. Note that a single semicolon appears at the end. There should be no
semicolon between the statements:

CREATE SCHEMA ACCOUNTS AUTHORI ZATI ON DBA
CREATE TABLE AB(A | NTEGER, ...)
CREATE TABLE CD(C CHAR(10), ...)
CREATE VIEW VI AS SELECT ...
GRANT SELECT ON AB TO PUBLIC
GRANT SELECT ON CD TO JOE;

It is not really necessary to create a schema and al its objects as one command. The schema can be created first, and
its objects can be created one by one.

DROP SCHEMA

drop schema statement

57

HyperS@L Schemas and Database Objects

<drop schena statenment> ::= DROP SCHEMA [| F EXI STS] <schema nane> [| F EXI STS]
<dr op behavi or >

This command destroys an existing schema. If <dr op behavi or > is RESTRI CT, the schema must be empty,
otherwise an error is raised. If CASCADE is specified as <dr op behavi or >, then al the objects contained in the
schema are destroyed with a CASCADE option.

Table Creation

CREATE TABLE
table definition

<table definition> ::= CREATE [{ <table scope> | <table type>}] TABLE [IF
NOT EXISTS] <table name> <table contents source> [ON COWM T { PRESERVE |
DELETE } ROAS]

<tabl e scope> ::= { GLOBAL | LOCAL } TEMPORARY

<table type> :: MEMORY | CACHED

<tabl e contents source> ::= <table elenent |ist> | <as subquery clause>
<table elenment list> ::= <left paren> <table elenent> [{ <comm> <table
element> }...] <right paren>

<tabl e elenment> ::= <colum definition> | <table constraint definition>| <like
cl ause>

like clause

A <li ke cl ause> copiesall column definitions from another table into the newly created table. Its three options
indicateif the<def aul t cl ause>,<i dentity col unm specificati on>and<generati on cl ause>
associated with the column definitions are copied or not. If an option is not specified, it defaultsto EXCLUDI NG. The
<gener ati on cl ause> refersto columns that are generated by an expression but not to identity columns. All
NOT NULL constraints are copied with the original columns, other constraints are not. The<l i ke cl ause> can
be used multiple times, allowing the new table to have copies of the column definitions of one or more other tables.

‘ CREATE TABLE t (id | NTEGER PRI MARY KEY, LIKE atable | NCLUDI NG DEFAULTS EXCLUDI NG | DENTI TY)

<like clause> ::= LIKE <table name> [<like options>]

<like options> ::= <like option>...

<like option> ::= <identity option> | <colum default option> | <generation
opti on>

<identity option> ::= INCLUDI NG | DENTI TY | EXCLUDI NG | DENTI TY

<colum default option> ::= | NCLUDI NG DEFAULTS | EXCLUDI NG DEFAULTS
<generation option> ::= | NCLUDI NG GENERATED | EXCLUDI NG GENERATED

as subquery clause

<as subquery clause> ::= [<left paren> <columm nane list> <right paren>] AS
<t abl e subquery> { WTH NO DATA | W TH DATA }

58

HyperS@L Schemas and Database Objects

An<as subquery cl ause> usedintabledefinition createsatablebased ona<t abl e subquer y>. Thiskind
of table definitionis similar to aview definition. If W TH DATA is specified, then the new table will contain the rows
of datareturned by the<t abl e subquery>.

| CREATE TABLE t (a, b, c) AS (SELECT * FROM atable) W TH DATA

column definition

A column definition consists of a <col unm nane> and in most cases a<dat a type> or <donai n nane>
as minimum. The other elements of <col urm defi ni ti on> are optional. Each <col uimm nane> in atable
isunique.

<colum definition> ::= <colum name> [<data type or domain nane>]
[<default clause>| <identity colunn specification>| <identity columm sequence
specification> | <generation clause>] [<update clause>] [<colunn constraint
definition> ..] [<collate clause>]

<data type or dommin nane> ::= <data type> | <domain nane>

<colum constraint definition> ::= [<constraint nanme definition>] <colum
constraint> [<constraint characteristics>]

<colum constraint> ::= NOT NULL | <unique specification> | <references
specification> | <check constraint definition>

A <columm constraint definition>isashortcut fora<table constraint definition> A
constraint that is defined in thisway is automatically turned into atable constraint. A nameis automatically generated
for the constraint and assigned to it.

If a<col | at e cl ause> isspecified, then aUNIQUE or PRIMARY KEY constraint or an INDEX on the column
will use the specified collation. Otherwise the default collation for the database is used.

GENERATED
generated columns
The value of a column can be autogenerated in two ways.

Oneway is specific to columns of integral types (INTEGER, BIGINT, etc.) and associates a sequence generator with
the column. When a new row is inserted into the table, the value of the column is generated as the next available
value in the sequence.

The SQL Standard supports the use of unnamed sequences with the IDENTITY keyword. In addition, HyperSQL
supports the use of a named SEQUENCE object, which must be in the same schema as the table.

<identity columm specification>::= GENERATED { ALWAYS | BY DEFAULT } AS | DENTI TY
[<left paren> <commpn sequence generator options> <right paren>]

<identity colum sequence specification ::= GENERATED BY DEFAULT AS SEQUENCE
<sequence nane>

The<identity colum specification>or<identity colum sequence specification>can
be specified for only a single column of the table.

The<i dentity colum specificati on>isusedfor columns which represent values based on an unnamed
seguence generator. It is possible to insert arow into the table without specifying avalue for the column. Thevalueis

59

HyperS@L Schemas and Database Objects

then generated by the sequence generators according to its rules. An identity column may or may not be the primary
key. Example below:

CREATE TABLE t (id | NTEGER GENERATED ALWAYS AS | DENTI TY(START W TH 100), nanme VARCHAR(20)
PRI MARY KEY)

The<i dentity col um sequence speci fi cati on>isused whenthe column valuesare based on anamed
SEQUENCE object (which must already exist). Example below:

‘ CREATE TABLE t (id | NTEGER GENERATED BY DEFAULT AS SEQUENCE s, name VARCHAR(20) PRI MARY KEY)

Inserting rows is done in the same way for a named or unnamed sequence generator. In both cases, if no value is
specified to be inserted, or the DEFAULT keyword is used for the column, the value is generated by the sequence
generator. If a value is specified, this value is used if the column definition has the BY DEFAULT specification.
If the column definition has the ALWAY S specification, a value can be specified but the OVERRIDING SYSTEM
VALUES must be specified in the INSERT statement.

The other way in which the column value is autogenerated is by using the values of other columns in the same row.
This method is often used to create an index on a value that is derived from other column values.

<generation clause> ::= GENERATED ALWAYS AS <generati on expressi on>
<generation expression> ::= <left paren> <val ue expressi on> <right paren>

The<gener ati on cl ause> isused for special columns which represent values based on the values held in other
columns in the same row. The <val ue expr essi on> must reference only other, non-generated, columns of the
table in the same row. Any function used in the expression must be deterministic and must not access SQL-data. No
<query expressi on>isalowed. When<gener ati on cl ause>isused, <dat a t ype> must be specified.

A generated column can be part of aforeign key or unique constraints or a column of an index. This capability isthe
main reason for using generated columns. A generated column may contain a formula that computes a value based
on the values of other columns. Fast searches of the computed value can be performed when an index is declared on
the generated column. Or the computed values can be declared to be unique, using a UNIQUE constraint on the table.
The computed column cannot be overridden by user supplied values. When arow is updated and the column values
change, the generated columns are computed with the new values.

When arow isinserted into atable, or an existing row is updated, no value except DEFAULT can be specified for a
generated column. In the example below, datais inserted into the non-generated columns and the generated column
will contain 'Felix the Cat' or 'Pink Panther'.

CREATE TABLE t (id | NTEGER PRI MARY KEY,
firstnane VARCHAR(20),
| ast name VARCHAR(20) ,
ful | nane VARCHAR(40) GENERATED ALWAYS AS (firstnanme || ' ' || lastnanme))
INSERT INTOt (id, firstnane, |astname) VALUES (1, 'Felix', '"the Cat')
INSERT INTOt (id, firstnane, |astname, fullnane) VALUES (2, 'Pink', 'Panther', DEFAULT)

DEFAULT
default clause

A default clause can be used if GENERATED is not specified. If acolumn hasa<def ault cl ause>thenitis
possible to insert arow into the table without specifying a value for the column.

<default clause> ::= DEFAULT <default option>

60

HyperS@L Schemas and Database Objects

<default option>::=<literal>| <datetinme value function>| USER| CURRENT_USER
| CURRENT_ROLE | SESSION _USER | SYSTEM USER | CURRENT_CATALOG | CURRENT_SCHEMA
| CURRENT_PATH | NULL

Thetype of the<def aul t opt i on> must match the type of the column.

In PGS (PostgreSQL) compatibility mode, aNEXTVAL function can be used. Also, in MSS compatibility mode, the
default value can be enclosed in parentheses.

ON UPDATE
on update clause

If acolumnhasa<on updat e cl ause> then every time an UPDATE or MERGE statement updates the val ues of
the other columns of the row, the value in this column is updated to the CURRENT_TIMESTAMP. If the UPDATE
statement explicitly updates this column, then the explicit value is used instead of CURRENT TIMESTAMP.

<on update clause> ::= ON UPDATE CURRENT_TI MESTAMP

The type of the column must be TIMESTAMP or TIMESTAMP WITH TIME ZONE.
Thisfeatureis similar to MySQL's ON UPDATE clause.

CONSTRAINT

constraint name and characteristics

<constraint name definition> ::= CONSTRAI NT <constraint nanme>

<constraint characteristics> ::= <constraint check tine> [[NOT | DEFERRABLE
[<constraint check time> 1]]

<constraint check time> ::= INTIALLY DEFERRED | | N TI ALLY | MVEDI ATE

Specify the name of a constraint and its characteristics. By default the constraint is NOT DEFERRABLE and
I NI TI ALLY | MMVEDI ATE. This means the constraint is enforced as soon as a data change statement is executed. I
I NI TI ALLY DEFERRED s specified, then the constraint is enforced when the session commits. The characteristics
must be compatible. The constraint check time can be changed temporarily for an SQL session. HyperSQL does not
support deferring constraint enforcement. This feature of the SQL Standard has been criticised because it alows a
session to read uncommitted data that violates database integrity constraints but has not yet been checked.

CONSTRAINT
table constraint definition

<table constraint definition> ::= [<constraint nane definition>] <table
constraint> [<constraint characteristics>]

<tabl e constraint> ::= <uni que constraint definition>| <referential constraint
definition> | <check constraint definition>

Three kinds of constraint can be defined on a table: UNIQUE (including PRIMARY KEY), FOREIGN KEY and
CHECK. Each kind has its own rules to limit the values that can be specified for different columns in each row of
the table.

UNIQUE

unique constraint definition

61

HyperS@L Schemas and Database Objects

<uni que constraint definition> ::= <unique specification> <left paren> <uni que
colum list> <right paren> | UNIQUE (VALUE)

<uni que specification> ::= UNIQUE | PRI MARY KEY
<uni que colum list> ::= <colum nane |ist>

A unique constraint is specified on a single column or on multiple columns. On each set of columns taken together,
only one UNIQUE constraint can be specified. Each column of a PRIMARY KEY constraint has an implicit NOT
NULL constraint.

If UNI QUE(VALUE) isspecified, the constraint created on all columns of the table.
FOREIGN KEY
referential constraint definition

<referential constraint definition> ::= FOREIGN KEY <l eft paren> <referencing
col ums> <right paren> <references specification>

<ref erences specification> ::= REFERENCES <ref erenced tabl e and col ums> [MATCH
<match type>] [<referential triggered action>]

<match type> ::= FULL | PARTIAL | SIMPLE
<referencing colums> ::= <reference columm |ist>
<referenced tabl e and col ums> ::= <table name> [<left paren> <reference col um

list> <right paren>]
<reference colum list> ::= <colum nane |list>

<referential triggered action> ::= <update rule> [<delete rule>] | <delete
rule> [<update rule>]

<update rule> ::= ON UPDATE <referential action>

<delete rule> ::= ON DELETE <referential action>
<referential action> ::= CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTI ON

A referentia constraint allows links to be established between the rows of two tables. The specified list of
<referenci ng col unms> corresponds one by one to the columns of the specified list of <r ef er enced
col ums> in another table (or sometimes in the same table). For each row in the table, a row must exist in the
referenced table with equivalent values in the two column lists. There must exist a single unique constraint in the
referenced table on all the<r ef er enced col ums>.

The[MATCH match type] clauseis optional and has an effect only on multi-column foreign keys and
only on rows containing at least aNULL in one of the <r ef er enci ng col utms>. If the clause is not specified,
MATCH SIMPLE isthe default. If MATCH SI MPLE is specified, then any NULL means the row can exist (without
a corresponding row in the referenced table). If MATCH FULL is specified then either al the column values must be
NULL or none of them. MATCH PARTI AL alows any NULL but the non NULL values must match those of arow
in the referenced table. HyperSQL does not support MATCH PARTI AL.

Referential actions are specified with ON UPDATE and ON DELETE clauses. These actions take place when arow
in the referenced table (the parent table) has referencing rows in the referencing table and it is deleted or modified
with any SQL statement. The default is NO ACTION. This means the SQL statement that causes the DELETE or

62

HyperS@L Schemas and Database Objects

UPDATE is terminated with an exception. The RESTRICT option is similar and works exactly the same without
deferrable constraints (which are not allowed by HyperSQL). The other three options, CASCADE, SET NULL and
SET DEFAULT all alow the DELETE or UPDATE statement to complete. With DELETE statementsthe CASCADE
option results in the referencing rows to be deleted. With UPDATE statements, the changes to the values of the
referenced columns are copied to the referencing rows. With both DELETE or UPDATE statement, the SET NULL
option results in the columns of the referencing rowsto be set to NULL. Similarly, the SET DEFAULT option results
in the columns of the referencing rows to be set to their default values.

CHECK
check constraint definition

<check constraint definition> ::= CHECK <l eft paren> <search condition> <right
par en>

A CHECK constraint can exist for aTABLE or for aDOMAIN. The<sear ch condi ti on> evaluatesto an SQL
BOOLEAN value for each row of the table. Within the <sear ch condi ti on> all columns of the table row can
be referenced. For all rows of the table, the <sear ch condi t i on> evaluatesto TRUE or UNKNOWN. When a
new row is inserted, or an existing row is updated, the <sear ch condi ti on> isevaluated and if it is FALSE,
the insert or update fails.

A CHECK constraint foraDOMAIN issimilar. Inits<sear ch condi ti on>,thetermVALUE isusedto represents
the value to which the DOMAIN applies.

| CREATE TABLE t (a VARCHAR(20) CHECK (a IS NOT NULL AND CHARACTER LENGTH(a) > 2)) |

The search condition of aCHECK constraint cannot contain any function that isnot deterministic. A check constraintis
adataintegrity constraint, therefore it must hold with respect to the rest of the datain the database. It cannot use values
that aretemporal or ephemeral. For example CURRENT _USER isafunction that returnsdifferent values depending on
who is using the database, or CURRENT _DATE changes day-to-day. Some temporal expressions are retrospectively
deterministic and are allowed in check constraints. For example, (CHECK VALUE < CURRENT_DATE) is valid,
because CURRENT_DATE will not move backwards in time, but (CHECK VALUE > CURRENT_DATE) is not
acceptable.

If you want to enforce the condition that a date value that isinserted into the database belongs to the future (at the time
of insertion), or any similar constraint, then use a TRIGGER with the desired condition.

DROP TABLE
drop table statement

<drop table statenent> ::= DROP TABLE [IF EXISTS] <table nanme> [|IF EXI STS]
<dr op behavi or>

Destroy atable. The default drop behaviour is RESTRICT and will cause the statement to fail if there is any view,
routine or foreign key constraint that referencesthe table. If <dr op behavi or > is CASCADE, it causes all schema
objects that reference the table to drop. Referencing views are dropped. In the case of foreign key constraints that
reference the table, the constraint is dropped, rather than the TABLE or DOMAIN that containsit.

Table Manipulation

Table manipulation statements change the attributes of tables or modify the objects such as columns and constraints.
SET TABLE CLUSTERED

set table clustered property

63

HyperS@L Schemas and Database Objects

<set table clustered statenent> ::= SET TABLE <tabl e nane> CLUSTERED ON <l eft
paren> <colum nane |ist> <right paren>

Set the row clustering property of atable. The <column name list> isalist of column names that must correspond to
the columns of an existing PRIMARY KEY, UNIQUE or FOREIGN KEY index, or to the columns of a user defined
index. This statement is only valid for CACHED or TEXT tables.

Tables rows are stored in the database files as they are created, sometimes at the end of the file, sometimes in the
middle of thefile. After aCHECKPOINT DEFRAG or SHUTDOWN COMPACT, the rows are reordered according
to the primary key of the table, or if thereisno primary key, in no particular order.

When several consecutive rows of atable are retrieved during query execution it is more efficient to retrieve rows that
are stored adjacent to one another. After executing this command, nothing changes until a CHECKPOINT DEFRAG
or SHUTDOWN COMPACT or SHUTDOWN SCRIPT is performed. After these operations, the rows are stored in
the specified clustered order. The property is stored in the database and applies to all future reordering of rows. Note
that if extensiveinserts or updates are performed on the tables, the rowswill get out of order until the next reordering.

SET TABLE TYPE

set table type

<set table type statenent> ::= SET TABLE <table nanme> TYPE { MEMORY | CACHED }
Changes the storage type of an existing table between CACHED and MEMORY types.

Only auser with the DBA role can execute this statement.

SET TABLE writeability

set table write property

<set table read only statement> ::= SET TABLE <tabl e name> { READ ONLY | READ
WRI TE }

Set the writeability property of atable. Tables are writeable by default. This statement can be used to change the
property between READ ONLY and READ WRI TE. Thisis afeature of HyperSQL.

SET TABLE SOURCE

set table sour ce statement

<set tabl e source statement> ::= SET TABLE <t abl e nane> SOURCE <fil e and opti ons>
[DESC]
<file and options>::= <doubl equote> <file path> [<sem colon> <property>...]

<doubl equot e>

Set the text source for atext table. This statement cannot be used for tables that are not defined as TEXT TABLE.

Supported Properties

quoted ={ true | false} default istrue. If false, treats double quotes as normal characters
all_quoted = { true | false} default isfalse. If true, adds double quotes around all fields.
encoding = <encoding name> character encoding for text and character fields, for example, encoding=UTF-8.

UTF-16 cannot be used.

HyperS@L Schemas and Database Objects

ignore_first ={ true | false} default isfalse. If trueignoresthe first line of thefile

cache_rows= <numeric value> rows of the text file in the cache. Default is 1000 rows

cache_size = <numeric value>r total size of the row in the cache. Default is 100 KB.

cache _scale= <numeric value> deprecated properties, replaced by cached_rows and cache size properties
and cache size scale = <numeric above.

value>

fs = <unquoted character> field separator

Vs = <unguoted character> varchar separator

Special indicatorsfor Hyper SQL Text Table separators
\semi semicolon

\quote quote

\space space character

\apos apostrophe

\n newline - Used as an end anchor (like $ in regular expressions)
\r carriage return

\t tab

\\ backslash

\u#Ht aUnicode character specified in hexadecimal

In the example below, the text source of the table is set to "myfile", the field separator to the pipe symbol, and the
varchar separator to the tilde symbol.

‘ SET TABLE nytabl e SOURCE 'nyfile;fs=|;vs=.;vs=~

Only a user with the DBA role can execute this statement.
SET TABLE SOURCE HEADER
set table source header statement

<set table source header statenent> ::= SET TABLE <table nanme> SOURCE HEADER
<header string>

Set the header for the text source for atext table. If this command is used, the <header stri ng>isused asthe
first line of the source file of the text table. Thislineis not part of the table data. Only a user with the DBA role can
execute this statement.

SET TABLE SOURCE on-off

set table sour ce on-off statement

<set tabl e source on-of f statenment> ::= SET TABLE <t abl e nane> SOURCE { ON| OFF }

65

HyperS@L Schemas and Database Objects

Attach or detach atext table from its text source. This command does not change the properties or the name of thefile
that is the source of atext table. When OFF is specified, the command detaches the table from its source and closes
the file for the source. In this state, it is not possible to read or write to the table. This allows the user to replace the
file with a different file, or delete it. When ON is specified, the source file is read. Only a user with the DBA role
can execute this statement

ALTER TABLE
alter table statement
<alter table statement> ::= ALTER TABLE <t abl e nane> <alter table action>

<alter table action> ::= <add columm definition> | <alter columm definition>
| <drop columm definition> | <add table constraint definition> | <drop table
constraint definition>

Change the definition of atable. Specific types of this statement are covered below.
ADD COLUMN
add column definition

<add colum definition> ::= ADD [COLUWN] <colum definition> [BEFORE <ot her
col um nane> |

Add acolumnto an existing table. The<col umm def i ni ti on> isspecified the sameway asitisusedin<t abl e
defini ti on>. HyperSQL alowstheuseof [BEFORE <ot her col utmm name>] to specify at which position
the new column is added to the table.

If the table contains rows, the new column must have a <def ault cl ause> or use one of the forms of
GENERATED. The column values for each row is then filled with the result of the <def aul t cl ause> or the
generated value.

DROP COLUMN
drop column definition
<drop colum definition> ::= DROP [COLUW] <col unm nane> <drop behavi or >

Destroy a column of a base table. The <dr op behavi or > is either RESTRI CT or CASCADE. If the column is
referenced in a table constraint that references other columns as well as this column, or if the column is referenced
in a VIEW, or the column is referenced in a TRIGGER, then the statement will fail if RESTRI CT is specified. If
CASCADE is specified, then any CONSTRAINT, VIEW or TRIGGER object that references the column is dropped
with a cascading effect.

ADD CONSTRAINT
add table constraint definition
<add table constraint definition> ::= ADD <table constraint definition>

Add aconstraint to atable. The existing rows of the table must conform to the added constraint, otherwise the statement
will not succeed.

DROP CONSTRAINT

drop table constraint definition

66

HyperS@L Schemas and Database Objects

<drop table constraint definition> ::= DROP CONSTRAI NT <constrai nt nane> <drop
behavi or >

Destroy a constraint on a table. The <dr op behavi or > has an effect only on UNIQUE and PRIMARY KEY
congtraints. If such a constraint is referenced by a FOREIGN KEY constraint, the FOREIGN KEY constraint will be
dropped if CASCADE is specified. If the columns of such a constraint are used in a GROUP BY clause in the query
expression of aVIEW or another kind of schemaobject, and afunctional dependency relationship exists between these
columns and the other columnsin that query expression, then the VIEW or other schema object will be dropped when
CASCADE is specified.

ALTER COLUMN
alter column definition

<alter colum definition> ::= ALTER [COLUW] <columm nane> <alter colum
action>

<alter colum action> ::= <set colum default clause> | <drop columm default
cl ause> | <alter colum data type clause> | <alter identity col um specification>
| <alter colum nullability> | <alter colum name> | <add colum identity
specification> | <drop columm identity specification>

Change a column and its definition. Specific types of this statement are covered below. See also the RENAME
statement above.

SET DEFAULT

set column default clause

<set columm default clause> ::= SET <default cl ause>

Set the default clause for a column. This can be used if the column is not defined as GENERATED.
DROP DEFAULT

drop column default clause

<drop colum default clause> ::= DROP DEFAULT

Drop the default clause from a column.

SET DATA TYPE

alter column data type clause

<alter colum data type clause> ::= SET DATA TYPE <data type>

Change the declared type of a column. The latest SQL Standard alows only changes to type properties such as
maximum length, precision, or scale, and only changes that cause the property to enlarge. HyperSQL allows changing
the typeif all the existing values can be cast into the new type without string truncation or loss of significant digits.

alter column add identity generator
alter column add identity generator
<add colum identity generator> ::= <identity columm specification>

Adds an identity specification to the column. The type of the column must be an integral type and the existing values
must not include nulls. This option is specific to HyperSQL

67

HyperS@L Schemas and Database Objects

‘ ALTER TABLE nytabl e ALTER COLUWN i d GENERATED ALWAYS AS | DENTI TY (START W TH 20000)

alter column identity generator
alter identity column specification
<alter identity colum specification> ::= <alter identity columm option>...

<alter identity colum option> ::= <alter sequence generator restart option> |
SET <basi ¢ sequence generator option>

Changethe propertiesof anidentity column. Thiscommand issimilar to thecommandsused for changing the properties
of named SEQUENCE objects discussed earlier and can use the same options.

ALTER TABLE nytable ALTER COLUW i d RESTART WTH 1000
ALTER TABLE nytable ALTER COLUWN id SET | NCREMENT BY 5

DROP GENERATED
drop column identity generator
<drop colum identity specification> ::= DROP GENERATED

Removes the identity generator from a column. After executing this statement, the column values are no longer
generated automatically. This option is specific to HyperSQL

‘ ALTER TABLE nytable ALTER COLUWN i d DROP GENERATED

SET [NOT] NULL
alter column nullability
<alter columm nullability> ::= SET [NOT] NULL

Adds or removesaNOT NULL constraint from a column. This option is specific to HyperSQL

View Creation and Manipulation

CREATE VIEW

view definition

<view definition> ::= CREATE VIEW [|IF NOI EXISTS] <table nane> <view
speci fication> AS <query expression> [WTH [CASCADED | LOCAL] CHECK OPTI ON]
<view specification> ::= [<left paren> <view colum list> <right paren>]
<view columm list> ::= <colum nane |ist>

Define aview. The <query expressi on> isa SELECT or similar statement. The <vi ew columm |i st >
is the list of unique names for the columns of the view. The number of columnsin the <vi ew colum | i st >
must match the number of columns returned by the <query expressi on>. If <vi ew col umm | i st >isnot
specified, then the columns of the <query expr essi on> should have unique names and are used as the names
of the view column.

68

HyperS@L Schemas and Database Objects

Some views are updatable. As covered elsewhere, an updatable view is based on a single table or updatable view.
For updatable views, the optional CHECK OPTI ON clause can be specified. If this option is specified, then if arow
of the view is updated or a new row is inserted into the view, then it should contain such values that the row would
be included in the view after the change. If W TH CASCADED CHECK OPTI ONis specified, then if the <query
expr essi on> of the view references another view, then the search condition of the underlying view should also be
satisfied by the update or insert operation.

DROP VIEW
drop view statement

<drop view statement> ::= DROP VIEW][IF EXISTS] <table name> [|IF EXI STS]
<dr op behavi or>

Destroy aview. The<dr op behavi or > issimilar to dropping atable.
ALTER VIEW
alter view statement

<alter view statenent> ::= ALTER VIEW <table name> <view specification> AS
<query expression> [WTH [CASCADED | LOCAL] CHECK OPTI ON]

Alter aview. The statement is otherwise identical to CREATE VIEW. The new definition replaces the old. If there

are database objects such as routines or views that reference the view, then these objects are recompiled with the new
view definition. If the new definition is not compatible, the statement fails.

Domain Creation and Manipulation

CREATE DOMAIN

domain definition

<domai n definition> ::= CREATE DOVAIN <domain nanme> [AS | <predefined type>
[<default clause>] [<domain constraint> ..] [<collate clause>]
<domain constraint> ::= [<constraint name definition>] <check constraint

definition> [<constraint characteristics>]

Define adomain. Although a DOMAIN is not strictly atype in the SQL Standard, it can be informally considered as
atype. A DOMAIN ishased on a<pr edef i ned t ype>, which isabase type defined by the Standard. It can have
a<defaul t cl ause>, similar to acolumn default clause. It can aso have one or more CHECK constraints which
limit the values that can be assigned to a column or variable that has the DOMAIN asiits type.

CREATE DOMAI N val i d_string AS VARCHAR(20) DEFAULT ' NO VALUE CHECK (value IS NOT NULL AND
CHARACTER_LENGTH(val ue) > 2)

ALTER DOMAIN

alter domain statement

<alter domain statenent> ::= ALTER DOVAI N <domnai n name> <al ter domain action>
<alter domain action> ::= <set domain default clause> | <drop domain default
clause> | <add domain constraint d