ESS — Emacs Speaks Statistics

ESS version 24.01.1

The ESS Developers (A.J. Rossini, R.M. Heiberger, K. Hornik,

M. Maechler, R.A. Sparapani, S.J. Eglen,

S.P. Luque, H. Redestig, V. Spinu, L. Henry, and J.A. Branham)
Current Documentation by The ESS Developers

Copyright (© 2002—2022 The ESS Developers

Copyright (© 1996-2001 A.J. Rossini

Original Documentation by David M. Smith

Copyright (© 1992-1995 David M. Smith

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Table of Contents

1 Introduction to ESS............ 1
1.1 Why should Tuse ESS? ... o 1
1.1.1 Features OVerviewcouuuuiteiiie e 2

1.2 New features in ESS. o i 3
1.3 Authors of and contributors to ESS................... 12
1.4 How to read thismanual i i i 13

2 Installing ESS on your system 14
2.1 Installing from a third-party repository 14
2.2 Installing from source......... ..o 14
2.3 Activating and Loading ESS......... il 15
2.4 Check Installationcoooiiiiiiiiii i 15

3 Interacting with statistical programs......... 16
3.1 Starting an ESS process ... 16
3.2 Running more than one ESS process.................... 16
3.3 ESS processes on Remote Computers 16
3.3.1 ESSand TRAMP 16

3.3.2 ESS-remote.........ooiiiiiiiii 17

3.4 Changing the startup actions............... ..., 18
3.5 Controlling buffer display............ ..o i 19

4 Interacting with the ESS process............. 21
4.1 Entering commands and fixing mistakes........................ 21
4.2 Manipulating the transcript ... 21
4.2.1 Manipulating the output from the last command.......... 22

4.2.2 Viewing older commands ...t 22

4.2.3 Re-submitting commands from the transcript 23

4.2.4 Keeping a record of your R session........................ 23

4.3 Command HiStory........ ..o 24
4.3.1 Saving the command history................ 25

4.4 References to historical commands............................. 25
4.5 Hot keys for common commands................ccoiiiiiiia.... 26
4.6 Is the Statistical Process running under ESS? 28
4.7 Using emacscliento i 28
4.8 Other commands provided by inferior-ESS..................... 28

5 Sending code to the ESS process 30
6 Manipulating saved transcript files........... 32
6.1 Resubmitting commands from the transcript file............... 32

6.2 Cleaning transcript files 32

7 Editing objects and functions................. 33
7.1 Creating or modifying R objects............., 33
7.2 Loading source files into the ESS process....................... 33
7.3 Detecting errors in source files............ 34
7.4 Indenting and formatting R code 34

7.4.1 Changing styles for code indentation and alignment 35
7.5 Commands for motion, completion and more................... 36
7.6 Maintaining R source files........... ... il 36
7.7 Names and locations of dump files............................. 38

8 Reading help files............ 40

9 Completion...................... . 42
9.1 Completion of object names, 42
9.2 Completion of function arguments 42
9.3 Minibuffer completion 43
9.4 COMPALLY .« ¢ e ettt et ettt e e 43
9.5 IciCles . et 43

10 Developing with ESS 44
10.1 ESS tracebug.ot 44

10.1.1 Getting started with tracebug 45
10.2 Editing documentation ... 46
10.2.1 Editing R documentation (Rd) files...................... 46
10.2.2 Editing roxygen2 documentation......................... 47
10.3 Namespaced Evaluationoiiiiia. ... 49

11 Other ESS features and tools................ 50
111 ElDOC. oot 50
11.2 Flymake ... 50
11.3 Handy commandsot 51
11.4 Syntactic highlighting of buffers............. 51
11.5 Parenthesis matching......... o i 52
11.6 Using graphics with ESS o o 52

11.6.1 Using ESS with the printer() driver.................... 52

11.6.2 Using ESS with windowing devices....................... 52

11.6.3 Java Graphics Device. 52
117 TenU. o oottt 52
11.8 Toolbar ... 53
119 Xref. 53
1110 RAired .. ooeee e 53
11.11 Package listing ... 53
11.12 Interaction with Org mode o .. 54

11.13 Support for Sweave in ESS and AUCTeX 54

ii

12 Overview of ESS features for the S family .. 56

12.1 ESS[R]-Editing files....... ... 56
12.2 iESS[R]-Inferior ESS processesooiiiiial 56
12.3 Philosophies for using ESS[R]..... ... 57
12.4 Example ESSusageo 57
13 ESS for SAS... 59
13.1 ESS[SAS]-Design philosophycooiiL. 59
13.2 ESS[SAS|-Editing files 59
13.3 ESS[SAS]-TAB K€Yttt 60
13.4 ESS[SAS]-Batch SAS processes.............coooiiiiiiiiian... 60
13.5 ESS[SAS]-Function keys for batch processing................. 62
13.6 iESS[SAS]-Interactive SAS processescooveiinon.. 65
13.7 iESS[SAS]-Common problemscooiiiiii.... 66
13.8 ESS[SAS|-Graphics ...t 67
13.9 ESS[SAS]-WiIndowsoouiiniiiiiiiii i 67
14 ESS for BUGS 68
14.1 ESS[BUGS]-Model files ..., 68
14.2 ESS[BUGS]-Command filesooooii... 68
14.3 ESS[BUGS]-Log files.... ...t 68
15 ESSfor JAGS.... 69
15.1 ESS[JAGS|-Model files............ooooiiiii 69
15.2 ESS[JAGS|-Command files...............coooiiiiiiiii... 69
15.3 ESS[JAGS|-Logfiles 69
16 Bugs and Bug Reporting, Mailing Lists..... 70
16.1 BUgS . oot 70
16.2 Reporting Bugs ... 70
16.3 Mailing Lists 70
16.4 Help with Emacs....... ..o i 71
Appendix A Customizing ESS................... 72
Indices...... ... 73
Keyindex ..o 73
Function and program index.......... ..., 73
Variable index. ... 75

Concept Index.ooi 75

iii

1 Introduction to ESS

ESS provides a generic interface, through Emacs, to statistical packages. It currently sup-
ports R (and the rest of the S family), SAS, BUGS/JAGS, Stata, and Julia with the level
of support roughly in that order.

Throughout this manual, Fmacs refers to GNU Emacs by the Free Software Foundation.
Although previous versions of ESS supported other Emacsen, current versions only support
GNU Emacs.

There are two main ways of interacting with ESS: through “regular” modes or “inferior”
modes. Regular modes act like normal Emacs major modes. ESS major modes are displayed
in the mode-line in the format ESS[dialect], where dialect can take values such as R,
SAS, or S.

ESS also provides easy access to an “inferior process,” which is an Emacs buffer associ-
ated with a running process. This can be an R session, for example. These inferior processes
are referred to as inferior ESS (iESS), and are shown in the modeline by iESS [dialect].

Currently, the documentation contains many references to ‘R’ where actually any sup-
ported (statistics) language is meant, i.e., ‘R’ could also mean ‘S’ or ‘SAS.’

For exclusively interactive users of R, ESS provides a number of features to make life
easier. There is an easy to use command history mechanism, including a quick prefix-search
history. To reduce typing, command-line completion is provided for all R objects and “hot
keys” are provided for common R function calls. Help files are easily accessible, and a paging
mechanism is provided to view them. Finally, an incidental (but very useful) side-effect of
ESS is that a transcript of your session is kept for later saving or editing.

No special knowledge of Emacs is necessary when using R interactively under ESS.

For those that use R in the typical edit—test-revise cycle when writing R functions, ESS
provides for editing of R functions in Emacs buffers. Unlike the typical use of R where
the editor is restarted every time an object is edited, ESS uses the current Emacs session
for editing. In practical terms, this means that you can edit more than one function at
once, and that the ESS process is still available for use while editing. Error checking is
performed on functions loaded back into R, and a mechanism to jump directly to the error
is provided. ESS also provides for maintaining text versions of your R functions in specified
source directories.

1.1 Why should I use ESS?

Statistical packages are powerful software systems for manipulating and analyzing data, but
their user interfaces often leave something to be desired: they offer weak editor functionality
and they differ among themselves so markedly that you have to re-learn how to do those
things for each package. ESS is a package which is designed to make editing and interacting
with statistical packages more uniform, user-friendly and give you the power of Emacs as
well.

Additionally, both Emacs and ESS (and R) are free software designed to give users full
control over their computer. For more on what this means, visit https://www.gnu.org/
philosophy/free-sw.html.

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html

Chapter 1: Introduction to ESS 2

1.1.1 Features Overview
e Languages Supported:
e S family (R, S, and S+ AKA S-PLUS)
e SAS
BUGS/JAGS
e Stata
e Julia
e Editing source code (S family, SAS, BUGS/JAGS, Stata, Julia)

e Syntactic indentation and highlighting of source code

e Partial evaluation of code
e Loading and error-checking of code
e Source code revision maintenance
e Batch execution (SAS, BUGS/JAGS)
e Use of imenu to provide links to appropriate functions
e Interacting with the process (S family, SAS, Stata, Julia)
e Command-line editing
e Searchable Command history
e Command-line completion of S family object names and file names
e Quick access to object lists and search lists
e Transcript recording
e Interface to the help system
e Transcript manipulation (S family, Stata)
e Recording and saving transcript files
e Manipulating and editing saved transcripts
e Re-evaluating commands from transcript files
e Interaction with Help Pages and other Documentation (R)
e Fast Navigation
e Sending Examples to running ESS process.
e Fast Transfer to Further Help Pages
e Help File Editing (R)
e Syntactic indentation and highlighting of source code.
e Sending Examples to running ESS process.

e Previewing

For source code buffers, ESS offers several features:
e Support for multiple indentation styles R code See Section 7.4 [Indenting], page 34.

e Facilities for loading and error-checking source files, including a keystroke to jump
straight to the position of an error in a source file. See Section 7.3 [Error Checking],
page 34.

Chapter 1: Introduction to ESS 3

Source code revision maintenance, which allows you to keep historic versions of R
source files. See Section 7.6 [Source Files], page 36.

Facilities for evaluating R code such as portions of source files, or line-by-line evaluation
of files (useful for debugging). See Chapter 5 [Evaluating code], page 30.

ESS also provides features that make it easier to interact with inferior ESS (iESS) process

(a connection between your buffer and the statistical package which is waiting for you to
input commands). These include:

Command-line editing for fixing mistakes in commands before they are entered. See
Section 4.1 [Command-line editing], page 21.

Searchable command history for recalling previously-submitted commands. See Sec-
tion 4.3 [Command History|, page 24.

Command-line completion of both object and file names for quick entry. See Chapter 9
[Completion], page 42.

Hot-keys for quick entry of commonly-used commands in ‘R’ such as objects(), and
search(). See Section 4.5 [Hot keys], page 26.

Transcript recording for a complete record of all the actions in an R session. See
Section 4.2 [Transcript|, page 21.

Interface to the help system, with a specialized mode for viewing R help files. See
Chapter 8 [Help|, page 40.

Object editing. ESS allows you to edit more than one function simultaneously in
dedicated Emacs buffers. The ESS process may continue to be used while functions
are being edited. See Section 7.1 [Edit buffer], page 33.

Finally, ESS provides features for re-submitting commands from saved transcript files,

including;:

Evaluation of previously entered commands, stripping away unnecessary prompts. See
Section 4.2.3 [Transcript resubmit|, page 23.

1.2 New features in ESS
Changes and New Features in 24.01.1:

Revert a bug introduced with the ess-request-a-process change

Changes and New Features in 24.01.0:
fix docstring warnings in ess-custom

:package-version is now set to "VERSION" in ess-custom. By make this is replaced
with "24.01.0" (or similar).

Better “collaboration” with org-mode Now ess-request-a-process obeys ess-gen-
proc-buffer-name-function, thanks to Ihor Radchenko.
Changes and New Features in 19.04 (unreleased):

ESS[R]: When a background command is interrupted with C-g, ESS now asks the user
if they want to disable background evaluations altogether. This is a resiliency measure
against cases where background evals cause cascading errors or hangs.

ESS[R]: Background commands now propagate errors to Emacs.

Chapter 1: Introduction to ESS 4

e ESS[R]: Background commands can now be disabled by process instad of globally. For
instance when a process has failed to initialize properly, background evals are disabled
for that particular process to avoid cascading errors. Other processes may still use
background commands.

e ESS[R]: ESSR commands are now more robust when ESSR is not in scope. This can
happen when using browser () in an environment that doesn’t inherit from the search
path.

e ESS[R]: Unexpected exits are now detected during startup. In that case an error is
thrown with advice about how to recover.

e ESS[R]: options(width =) is now set on startup based on the width of the inferior
window.

e ESS[R]: Add support for R projects and start R by default in the project folder.
e ESS[R]: Backticked symbols in the process buffer are no longer fontified as strings.

e ESS[R]: ess-command now runs R code in a sandboxed environment. Use
.ess.environment () to inspect the current environment.

e ESS[R]: Added support for new syntax in R 4.0 and R 4.1. This concerns raw strings,
lambda functions, and the pipe operator.

e ESS[R]: Highlight error locations in rlang style backtraces

e ESS[R]: Fixed issue that caused ESS-help to hang when usage blocks include R com-
ments (#1025). Fix contributed by Bill Evans.

e ESS: New ess-elisp-trace-mode minor mode. Toggle it to start or stop tracing all
ess-prefixed functions with trace-function. Tracing is useful for debugging back-
ground ESS behaviour.

e ESS[R]: ess-get-help-aliases-list now caches the aliases on the R side. This
should speed up help lookup when the search path has changed and the aliases are
read again.

e ESS: ess-command now uses a default timeout of 30 seconds. It should normally be
avoided with long-running tasks because it causes Emacs to block while the command
is running. If the timeout is reached, an error is thrown. An interrupt is also sent to
the process in case of early exit.

This is a behaviour change: you will now have to explicitly opt in blocking the whole
Emacs UI for more than 30 seconds by supplying a larger timeout (use most-positive-
fixnum for infinity).

e ESS: ess-wait-for-process now returns nil if a timeout is reached.
e ESS: ess-get-words-from-vector gains a timeout argument.

e ESS[R]: Fixed performance issue with argument completions. The help summary for
the argument is no longer displayed in the echo area. This fixes delays and hangs

(#1062).

e ESS[R]: ess-command is now more robust and resilient to hangs and custom prompts
(#1043). Tt also strips continuation prompts (+ prompts) automatically and reliably

(#1116).

e ESS[R]: ess-command now handles sinked consoles correctly.

Chapter 1: Introduction to ESS 5

e ESS[R]: ess-command no longer changes .Last.value. As a result, background tasks
like completions no longer affect the last value binding (#1058).

e ESS[R]: Namespaced evaluation is disable in roxygen examples (#1026). Part of this
change is that namespaced evaluation has become a buffer-local rather than process-
local setting (#1046). This makes it possible to disable namespaced evaluation in
specific buffers or contexts.

e iESS: Inferior processes can now properly reuse frames (#987). Fixed issue that caused
the current buffer to be incorrectly displayed in the new frame when display-buffer
is set to pop up frames.

e ESSIR]: Better support for tramp. Fixed package evaluation on remote servers with
Tramp (#950); process reloading (#1001); and an evaluation issue (#1024). These
fixes were contributed by David Pritchard.

e ESS[R]: Automatic offsetting of R process output is now disabled by default because it
produces undesirable output in some situations. To re-enable, set inferior-ess-fix-
misaligned-output to t.

e ESS[R]: Improved xref lookup (M-.). Function locations are now always detected for
package libraries listed in ess-r-package-library-paths.

e ESS[R]: Evaluated lines starting with the Roxygen prefix are now always stripped from
the prefix, so they can be sent to the process easily. Previously, this was only the case
inside the examples field. Since roxygen is switching to R markdown, it becomes useful
to evaluate chunks of R outside examples.

e stata support is now obsolete since we were unable to elicit FSF paperwork from some
of the original authors: see the lisp/obsolete sub-directory on the ESS github repo

e ess-set-working-directory no longer changes the active directory (as defined by the
buffer-local variable default-directory) of the buffer where the command is called.
Instead, the active directory of the inferior buffer is updated to the new working direc-
tory.

e The default of ess-eval-visibly is now 'nowait. With this change you should no longer
experience freezes while evaluating code.

e ESS[R]: There is a new menu entry for reloading the R process. It is otherwise bound
to C-c C-e C-r. Reloading now reuses the same process name and start arguments
that were used to start the process.

e iESS: Process runners now return the inferior buffer. Note that callers of inferior
runners should not assume that the current buffer has been set to the inferior buffer.
Instead, use with-current-buffer with the return value of the inferior.

e iESS[SAS]: The SAS keymap was only set in iESS buffers called ‘“*SAS*‘. This is now
fixed.

e ESS[R]: Fixed longstanding indentation issues involving :: and ::: operators.

e Implement a more reliable check for the process busy state. Background actions such
as completion and directory synchronization should not block the process and should
not cause printing of the extraneous output to the interpreter.

e Activate goto-address-mode for url and email highlighting in inferior buffers.

e smart-underscore and ess-smart-S-assign-key have been removed. Users who
liked the previous behavior (i.e. underscore inserting “<-”) should bind ess-insert-

Chapter 1: Introduction to ESS 6

assign to the underscore in their Emacs initialization file. For example, (define-
key ess-r-mode-map "_" #'ess-insert-assign) and (define-key inferior-ess-
r-mode-map "_" #'ess-insert-assign) will activate it in all ESS R buffers.

e ESS major modes are now defined using ’define-derived-mode’. This makes ESS ma-
jor modes respect modern conventions such as having <language>-mode-hook and
<language>-mode-map. Users are encouraged to place customizations under the ap-
propriate mode.

e New option ess-auto-width controls setting the width option on window changes. Users
can change it to ’frame, 'window, or an integer. See the documentation for details.
ess—auto-width-visible controls visibility.

e ESS now respects display-buffer-alist. Users can now use display-buffer-alist
to manage how and where windows appear. For more information and examples, see
See Section “Controlling buffer display” in ess.

e ess-roxy-mode can now be enabled in non-R buffers. This is primarily intended to
support roxygen documentation for cpp buffers. Preview functionality is not supported
outside R buffers.

e ESS[R]: DESCRIPTION files now open in conf-colon-mode.

e ess-style now has effects when set as a file or directory local variable.

e ess-default-style is now obsolete, use ess-style instead.

e Options for ’ess-gen-proc-buffer-name-function’ have been renamed. ess-gen-proc-
buffer-name:projectile-or-simple was renamed to ess-gen-proc-buffer-name:project-
or-simple and ess-gen-proc-buffer-name:projectile-or-directory was renamed to
ess-gen-proc-buffer-name:project-or-directory. As the name suggests, these now rely
on project.el (included with Emacs) rather than projectile.el, which is a third-party
package.

e Eldoc fully honors eldoc-echo-area-use-multiline-p

e ESS[R]: ess-r-rhub-check-package gained new RECOMMENDED.

e ESSIR]: devtools commands ask about saving modified buffers before running. Users
can disable the questioning with ess-save-silently.

e ESS[R] help pages now provide links to other help topics. This is similar with what
you would see with, for example options(help_type = ~“html'') but works with the
plain-text version as well. This only works with options(useFancyQuotes = TRUE)
(the default).

e ess-rdired buffers now derive from tabulated-list-mode. They should look better and
be a bit faster overall. The size column now displays object sizes in bytes.

e ess-rdired buffers now auto-update. The frequency is governed by the new option
ess-rdired-auto-update-interval.

e ESS[R]: electric-layout-mode is now supported. This automatically inserts a new-
line after an opening curly brace in R buffers. To enable it, customize ess-r-mode-
hook.

e ESS[R]: imenu now supports assignment with the equals sign.

e ESS[Rd]: Rd no longer writes abbrevs to user’s abbrev file.

e ESS removed support for many unused languages. This includes old versions of S+,
ARC, OMG, VST, and XLS.

Chapter 1: Introduction to ESS 7

ess-r-runner-prefixes was modified to find R-4 and later.

ESS no longer activates eldoc if the user has disabled global-eldoc-mode.

The following have been made obsolete or removed, see their documentation for more

detail:

Libraries for literate data analysis are obsolete and not loaded by default. This includes
ess-noweb, ess-swv, and related functionality like Rnw-mode. Users are encouraged
to switch to one of several other packages that deal with these modes. For example,
polymode https://github.com/polymode/poly-R/, https://polymode.github.
io/, or markdown-mode with edit-indirect https://jblevins.org/projects/
markdown-mode.

Support for auto-complete is obsolete. The auto-complete package is unmaintained
and so ESS support is now obsolete. Users are encouraged to switch to company-mode
instead.

User options for controlling display of buffers. This includes ess-show-buffer-action,
inferior-ess-same-window, inferior-ess-own-frame, and inferior-ess-frame-
alist. See above about ESS respecting display-buffer-alist.

Variables ess-tab-always-indent and ess-tab-complete-in-script. Use the
Emacs-wide setting of tab-always-indent instead.

inferior-ess-*-start-file variables. All modes except Stata did not respect cus-
tomization of this variable. In order to load a file on startup, you should put a function
on ess—*-post-run-hook.

Bug Fixes in 18.10.3:

More Makefile fixes, notably installing *.els.
Bug Fixes in 18.10.2:

ESS[R] Fix namespace evaluation in non-installed packages. Evaluation is directed into
GlobalEnv as originally intended.

Makefile fixes, notably for make install and including full docs in the tarballs.

Bug Fixes in 18.10.1:

New functions ess-eval-line-visibly-and-step (C-c C-n and ess-eval-region-
or-line-visibly-and-step (C-RET) which behave as the old versions of ess-eval-
line-and-step and ess-eval-region-or-line-and-step.

Changes and New Features in 18.10:

This is the last release to support Emacs older than 25.1. Going forward, only GNU
Emacs 25.1 and newer will be supported. Soon after this release, support for older
Emacs versions will be dropped from the git master branch. Note that MELPA uses
the git master branch to produce ESS snapshots, so if you are using Emacs < 25.1 from
MELPA and are unable to upgrade, you should switch to MELPA-stable.

ESS now displays the language dialect in the mode-line. So, for example, R buffers will
now show ESS[R] rather than ESSI[S].

The ESS manual has been updated and revised.

https://github.com/polymode/poly-R/
https://polymode.github.io/
https://polymode.github.io/
https://jblevins.org/projects/markdown-mode
https://jblevins.org/projects/markdown-mode

Chapter 1: Introduction to ESS 8

e The ESS initialization process has been further streamlined. If you update the au-
toloads (which installation from package-install does), you should not need to
(require 'ess-site) at all, as autoloads should automatically load ESS when it is
needed (e.g. the first time an R buffer is opened). In order to defer loading your ESS
config, you may want to do something like (with-require-after-load "ess" <ess-
config-here>) in your Emacs init file. Users of the popular use-package Emacs
package can now do (use-package ess :defer t) to take advantage of this behavior.
For more information on this feature, see See Section “Activating and Loading ESS”
in ess.

e ESS now respects Emacs conventions for keybindings. This means that The C-c
[letter] bindings have been removed. This affects C-c h, which was bound to ess-
eval-line-and-step-invisibly in sas-mode-local-map; C-c £, which was bound to
ess-insert-function-outline in ess-add-MM-keys; and C-c h, which was bound to
ess-handy-commands in Rd-mode-map, ess-noweb-minor-mode-map, and ess-help-
mode-map

e Functions ess-eval-line-and-step and ess-eval-region-or-line-and-step now
behave consistently with other evaluation function inside a package.

e ESS[R|: ess-r-package-use-dir now works with any mode. This sets the working
directory to the root of the current package including for example C or C++ files within
/src).

e ESS[R]: Long + + prompts in the inferior no longer offset output.

e ESS[R]: New option strip for inferior-ess-replace-long+. This strips the entire +
+ sequence.

e ESS modes now inherit from prog-mode. In the next release, ESS modes will use
define-derived-mode so that each mode will have (for example) its own hooks and
keymaps.

e ESS[R]: Supports flymake in R buffers for Emacs 26 and newer. Users need to install
the lintr package to use it. Customizable options include ess-use-flymake, ess-r-
flymake-linters, and ess-r-flymake-lintr-cache.

e ESS[R]: Gained support for xref in Emacs 25+ See Section “Xref” in The Gnu Emacs
Reference Manual.

e ESS[R|: The startup screen is cleaner. It also displays the startup directory with an
explicit setwd ().

e ESS[R]: Changing the working directory is now always reflected in the process buffer.
e ESS[R]: Makevars files open with makefile-mode.

e New variable ess-write-to-dribble. This allows users to disable the dribble (*ESS*)
buffer if they wish.

e All of the *-program-name variables have been renamed to *-program. Users who
previously customized e.g. inferior-ess-R-program-name will need to update their
customization to inferior-ess-R-program. These variables are treated as risky vari-
ables.

e ess-smart-S-assign was renamed to ess-insert-assign. It provides similar func-
tionality but for any keybinding, not just ‘_‘. For instance if you bind it to ‘;‘, repeated
invocations cycle through between assignment and inserting ‘;‘.

Chapter 1: Introduction to ESS 9

C-c C-= is now bound to ess-cycle-assign by default. See the documentation for
details. New user customization option ess-assign-1list controls which assignment
operators are cycled.

ESS[R] In remote sessions, the ESSR package is now fetched from GitHub.

Commands that send the region to the inferior process now deal with rectangular
regions. See the documentation of ess-eval-region for details. This only works on
Emacs 25.1 and newer.

ESS[R]: Improvements to interacting with iESS in non-R files. Interaction with inferior
process in non-R files within packages (for instance C or C++ files) has been improved.
This is a work in progress.

ESS[R]: Changing the working directory is now always reflected in the process buffer.
ESS[JAGS]: *.jog and *.jmd files no longer automatically open in JAGS mode.

Many improvements to fontification:

Improved customization for faces. ESS now provides custom faces for (nearly) all faces
used and places face customization options into their own group. Users can customize
these options using M-x customize-group RET ess-faces.

Many new keywords were added to ess-R-keywords and ess-R-modifiers. See the
documentation for details.

ESS[R]: in is now only fontified when inside a for construct. This avoids spurious
fontification, especially in the output buffer where ‘in‘ is a common English word.

ESS: Font-lock keywords are now generated lazily. That means you can now add or remove
keywords from variables like ess-R-keywords in your Emacs configuration file after
loading ESS (i.e. in the :config section for use-package users).

ESS[R]: Fontification of roxygen @param keywords now supports comma-separated pa-
rameters.

ESS[R]: Certain keywords are only fontified if followed by a parenthesis. Function-like
keywords such as if () or stop() are no longer fontified as keyword if not followed by
an opening parenthesis. The same holds for search path modifiers like library() or
require().

ESS[R]: Fixed fontification toggling. Especially certain syntactic elements such as %op%
operators and backquoted function definitions.

ESS[R]: ess-font-lock-toggle-keyword can be called interactively. This command
asks with completion for a font-lock group to toggle. This functionality is equivalent
to the font-lock menu.

Notable bug fixes:

prettify-symbols-mode no longer breaks indentation. This is accomplished by having
the pretty symbols occupy the same number of characters as their non-pretty cousins.
You may customize the new variable ess-r-prettify-symbols to control this behav-
ior.

ESS: Inferior process buffers are now always displayed on startup. Additionally, they
don’t hang Emacs on failures.

Chapter 1: Introduction to ESS 10

Obsolete libraries, functions, and variables:

The ess-r-args.el library has been obsoleted and will be removed in the next release.
Use eldoc-mode instead, which is on by default.

Functions and options dealing with the smart assign key are obsolete. The following
functions have been made obsolete and will be removed in the next release of ESS: ess-
smart-S—-assign, ess-toggle-S-assign, ess-toggle-S-assign-key, ess—-disable-
smart-S-assign.

The variable ess-smart-S-assign-key is now deprecated and will be removed in the
next release. If you would like to continue using ‘_ for inserting assign in future releases,
please bind ess-insert-assign in ess-mode-map the normal way.

ESS[S]: Variable ess-s-versions-1list is obsolete and ignored. Use ess-s-versions
instead. You may pass arguments by starting the inferior process with the universal
argument.

Changes and New Features in 17.11:

The ESS initialization process has been streamlined. You can now load the R and
Stata modes independently from the rest of ESS. Just put (require 'ess-r-mode)
or (require 'ess-stata-mode) in your init file. This is for experienced Emacs users
as this requires setting up autoloads for .R files manually. We will keep maintaining
ess-site for easy loading of all ESS features.

Reloading and quitting the process is now more robust. If no process is attached, ESS
now switches automatically to one (prompting you for selection if there are several
running). Reloading and quitting will now work during a debug session or when R
is prompting for input (for instance after a crash). Finally, the window configuration
is saved and restored after reloading to prevent the buffer of the new process from
capturing the cursor.

ESS[R]: New command ess-r-package-use-dir. It sets the working directory of the
current process to the current package directory.

ESS[R] Lookup for references in inferior buffers has been improved. New variable ess-r-
package-source-roots contains package sub-directories which are searched recursively
during the file lookup point. Directories in ess-tracebug-search-path are now also
searched recursively.

ESS[R] Namespaced evaluation is now automatically enabled only in the R/ directory.
This way ESS will not attempt to update function definitions from a package if you
are working from e.g. a test file.

Changes and New Features in 16.10:

ESS[R]: Syntax highlighting is now more consistent. Backquoted names are not fonti-
fied as strings (since they really are identifiers). Furthermore they are now correctly
recognized when they are function definitions or function calls.

ESS[R]: Backquoted names and %op¥% operators are recognized as sexp. This is useful
for code navigation, e.g. with C-M-f and C-M-b.

ESS[R]: Integration of outline mode with roxygen examples fields. You can use outline
mode’s code folding commands to fold the examples field. This is especially nice to use
with well documented packages with long examples set. Set ess-roxy-fold-examples
to non-nil to automatically fold the examples field when you open a buffer.

Chapter 1: Introduction to ESS 11

ESS[R]: New experimental feature: syntax highlighting in roxygen examples fields. This
is turned off by default. Set ess-roxy-fontify-examples to non-nil to try it out.

ESS[R]: New package development command ess-r-devtools-ask bound to C-c C-w
C-a. It asks with completion for any devtools command that takes pkg as argument.

ESS[R]: New command C-c C-e C-r to reload the inferior process. Currently only
implemented for R. The R method runs inferior-ess-r-reload-hook on reloading.

ESS[R]: ess-r-package-mode is now activated in non-file buffers as well.
Bug fixes in 16.10:
ESS[R]: Fix broken (un)flagging for debugging inside packages

ESS[R]: Fixes (and improvements) in Package development
ESS[R]: Completion no longer produces .. .= inside list ().
ESS[R]: Better debugging and tracing in packages.

ESS[R]: Better detection of symbols at point.

ESS[R]: No more spurious warnings on deletion of temporary files.
ESS[julia]: help and completion work (better)

ESS[julia]: available via ess-remote

Changes and New Features in 16.04:

ESS[R]: developer functionality has been refactored. The new user interface consists
of a single command ess-r-set-evaluation-env bound by default to C-c C-t C-s.
Once an evaluation environment has been set with, all subsequent ESS evaluation will
source the code into that environment. By default, for file within R packages the
evaluation environment is set to the package environment. Set ess-r-package-auto-
set-evaluation-env to nil to disable this.

ESS[R]: New ess-r-package-mode This development mode provides features to make
package development easier. Currently, most of the commands are based on the
devtools packages and are accessible with C-c C-w prefix. See the documentation
of ess-r-package-mode function for all available commands. With C-u prefix each
command asks for extra arguments to the underlying devtools function. This mode is
automatically enabled in all files within R packages and is indicated with [pkg:NAME]
in the mode-line.

ESS[R]: Help lookup has been improved. It is now possible to get help for namespaced
objects such as pkg::foobar. Furthermore, ESS recognizes more reliably when you
change options('html_type').
ESS[R]: New specialized breakpoints for debugging magrittr pipes
ESS: ESS now implements a simple message passing interface to communicate between
ESS and inferior process.

Bug fixes in 16.04:
ESS[R]: Roxygen blocks with backtics are now correctly filled
ESS[R]: Don’t skip breakpoints in magrittr’s debug_pipe

ESS[R]: Error highlighting now understands ‘testthat‘ type errors

[

ESS[Julia]: Added getwd and setwd generic commands

Chapter 1: Introduction to ESS 12

1.3 Authors of and contributors to ESS

The ESS environment is built on the open-source projects of many contributors, dating
back to 1989 where Doug Bates and Ed Kademan wrote S-mode to edit S and Splus files in
GNU Emacs. Frank Ritter and Mike Meyer added features, creating version 2. Meyer and
David Smith made further contributions, creating version 3. For version 4, David Smith
provided significant enhancements to allow for powerful process interaction.

John Sall wrote GNU Emacs macros for SAS source code around 1990. Tom Cook added
functions to submit jobs, review listing and log files, and produce basic views of a dataset,
thus creating a SAS-mode which was distributed in 1994.

In 1994, A.J. Rossini extended S-mode to support XEmacs. Together with extensions
written by Martin Maechler, this became version 4.7 and supported S, Splus, and R. In
1995, Rossini extended SAS-mode to work with XEmacs.

In 1997, Rossini merged S-mode and SAS-mode into a single Emacs package for statistical
programming; the product of this marriage was called ESS version 5. Richard M. Heiberger
designed the inferior mode for interactive SAS and SAS-mode was further integrated into
ESS. Thomas Lumley’s Stata mode, written around 1996, was also folded into ESS. More
changes were made to support additional statistical languages, particularly XLispStat.

ESS initially worked only with Unix statistics packages that used standard-input and
standard-output for both the command-line interface and batch processing. ESS could
not communicate with statistical packages that did not use this protocol. This changed in
1998 when Brian Ripley demonstrated use of the Windows Dynamic Data Exchange (DDE)
protocol with ESS. Heiberger then used DDE to provide interactive interfaces for Windows
versions of Splus. In 1999, Rodney A. Sparapani and Heiberger implemented SAS batch for
ESS relying on files, rather than standard-input/standard-output, for Unix, Windows and
Mac. In 2001, Sparapani added BUGS batch file processing to ESS for Unix and Windows.

e The multiple process code, and the idea for ess-eval-line-and-next-line are by
Rod Ball.

e Thanks to Doug Bates for many useful suggestions.

e Thanks to Martin Maechler for reporting and fixing bugs, providing many useful com-
ments and suggestions, and for maintaining the ESS mailing lists.

e Thanks to Frank Ritter for updates, particularly the menu code, and invaluable com-
ments on the manual.

e Thanks to Ken’ichi Shibayama for his excellent indenting code, and many comments
and suggestions.

e Thanks to Aki Vehtari for adding interactive BUGS support.
e Thanks to Brendan Halpin for bug-fixes and updates to Stata-mode.
e Last, but definitely not least, thanks to the many ESS users and contributors to the
ESS mailing lists.
ESS is being developed and currently maintained by
e A.J. Rossini (mailto:blindglobe@gmail.com)
e Richard M. Heiberger (mailto:rmh@temple.edu)
e Kurt Hornik (mailto:Kurt.Hornik@R-project.org)

mailto:blindglobe@gmail.com
mailto:rmh@temple.edu
mailto:Kurt.Hornik@R-project.org

Chapter 1: Introduction to ESS 13

e Martin Maechler (mailto:maechler@stat.math.ethz.ch)
e Rodney A. Sparapani (mailto:rsparapa@mcw.edu)

e Stephen Eglen (mailto:stephen@gnu.org)

e Sebastian P. Luque (mailto:spluque@gmail.com)

e Henning Redestig (mailto:henning.red@googlemail.com)
e Vitalie Spinu (mailto:spinuvit@gmail.com)

e Lionel Henry (mailto:lionel.hry@gmail.com)

e J. Alexander Branham (mailto:alex.branham@gmail.com)

1.4 How to read this manual

If you need to install ESS, read Chapter 2 [Installation], page 14, for details on what needs
to be done before proceeding to the next chapter. This section describes some of the basics
of using Emacs. If you are already familiar with basic Emacs functionality, skip this section.
You may also want to use the Emacs tutorial, accessible via C-h t.

In this manual we use the standard notation used by Emacs for describing the keystrokes
used to invoke certain commands. C-<chr> means hold the CONTROL key while typing
the character <chr>. M-<chr> means hold the META key (usually ALT) down while typing
<chr>. If there is no META, EDIT or ALT key, instead press and release the ESC key and
then type <chr>.

All ESS commands can be invoked by typing M-x command. Most of the useful commands
are bound to keystrokes for ease of use. Also, the most popular commands are also available
through the Emacs menubar, and a small subset are provided on the toolbar. Where
possible, keybindings are similar to other modes in Emacs to strive for a consistent user
interface within Emacs, regardless of the details of which programming language is being
edited, or process being run.

Some commands, such as M-x R can accept an optional ‘prefix’ argument. To specify
the prefix argument, you would type C-u before giving the command. For example, if you
type C-u M-x R, you will be asked for command line options that you wish to invoke the R
process with.

Emacs is a ‘self-documenting’ text editor. This applies to ESS in two ways. First, some
documentation about each ESS command can be obtained by typing C-h f. For example,
if you type C-h f ess-eval-region, documentation for that command will appear in a
separate *Help* buffer. Second, C-h m pops up a complete list of keybindings available in
each ESS mode and brief description of that mode.

Emacs is a versatile editor written in both C and a dialect of Lisp known as Elisp. ESS
is written in Elisp and benefits from the flexible nature of lisp. In particular, many aspects
of ESS behaviour can be changed by suitable customization of Lisp variables. This manual
mentions some of the most frequent variables. A full list of them however is available by
using the Custom facility within Emacs. Type M-x customize-group RET ess RET to get
started. Appendix A [Customization|, page 72, provides details of common user variables
you can change to customize ESS to your taste, but it is recommended that you defer this
section until you are more familiar with ESS.

mailto:maechler@stat.math.ethz.ch
mailto:rsparapa@mcw.edu
mailto:stephen@gnu.org
mailto:spluque@gmail.com
mailto:henning.red@googlemail.com
mailto:spinuvit@gmail.com
mailto:lionel.hry@gmail.com
mailto:alex.branham@gmail.com

14

2 Installing ESS on your system

ESS supports GNU Emacs versions 25.1 and newer.

ESS is most likely to work with current/recent versions of the following statistical pack-
ages: R/S-PLUS, SAS, Stata, OpenBUGS and JAGS.

To build the PDF documentation, you will need a version of TeX Live or texinfo that
includes texi2dvi.

There are two main methods used for installing ESS. You may install from a third-party
repository or from source code. Once you install it, you must also activate or load ESS in
each Emacs session, though installation from a third-party repository likely takes care of
that for you. See Section 2.3 [Activating and Loading ESS], page 15, for more details.

2.1 Installing from a third-party repository

ESS is packaged by many third party repositories. Many GNU/Linux distributions package
it, usually with the name “emacs-ess” or similar.

ESS is also available through Milkypostman’s Emacs Lisp Package Archive (MELPA),
a popular repository for Emacs packages. Instructions on how to do so are found on
MELPA’s website (https://melpa.org/). MELPA also hosts MELPA-stable with sta-
ble ESS builds. You may choose between MELPA with the latest and greatest features
(and bugs) or MELPA-stable, which may lag a bit behind but should be more stable.

After installing, users should make sure ESS is activated or loaded in each Emacs session.
See Section 2.3 [Activating and Loading ESS], page 15. Depending on install method, this
may be taken care of automatically.

2.2 Installing from source

Stable versions of ESS are available at the ESS web page (https://ess.r-project.org)
as a .tgz file or .zip file. ESS releases are GPG-signed, you should check the signature by
downloading the accompanying .sig file and doing:

gpg —-verify ess-18.10.tgz.sig

Alternatively, you may download the git repository. ESS is currently hosted on
GitHub: https://github.com/emacs-ess/ESS. git clone https://github.com/emacs-
ess/ESS.git will download it to a new directory ESS in the current working
directory.

We will refer to the location of the ESS source files as /path/to/ESS/ hereafter.

After installing, users should make sure they activate or load ESS in each Emacs session,
see Section 2.3 [Activating and Loading ESS], page 15,

Optionally, compile Elisp files, build the documentation, and the autoloads:

cd /path/to/ESS/
make

Without this step the documentation, reference card, and autoloads will not be available.
Uncompiled ESS will also run slower.

https://melpa.org/
https://ess.r-project.org
https://github.com/emacs-ess/ESS

Chapter 2: Installing ESS on your system 15

Optionally, you may make ESS available to all users of a machine by installing it site-
wide. To do so, run make install. You might need administrative privileges:

make install

The files are installed into /usr/share/emacs directory. For this step to run correctly
on macOS, you will need to adjust the PREFIX path in Makeconf. The necessary code and
instructions are commented in that file.

2.3 Activating and Loading ESS

After installing ESS, you must activate or load it each Emacs session. ESS can be au-
toloaded, and if you used a third-party repository (such as your Linux distribution or
MELPA) to install, you can likely skip this section and proceed directly to Section 2.4
[Check Installation], page 15,

Otherwise, you may need to add the path to ESS to load-path with:
(add-to-list 'load-path "/path/to/ESS/lisp")

You then need to decide whether to take advantage of deferred loading (which will result
in a faster Emacs startup time) or require ESS when Emacs is loaded. To autoload ESS
when needed (note that if installed from source, you must have run make):

(load "ess-autoloads")

To require ESS on startup, you can either put
(require 'ess-site)

or
(require 'ess-r-mode)

In your configuration file, depending on whether you want all ESS features or only R
related features.

2.4 Check Installation

Restart Emacs and check that ESS was loaded from a correct location with M-x ess-
version.

16

3 Interacting with statistical programs

As well as using ESS to edit your source files for statistical programs, you can use ESS to
run these statistical programs. In this chapter, we mostly will refer by example to running
R from within Emacs. The Emacs convention is to name such processes running under its
control as ‘inferior processes’. Some users find this terminology confusing; you may prefer
to think of these as ‘interactive processes.” Either way, we use the term ‘iESS’ to refer to
the Emacs mode used to interact with statistical programs.

3.1 Starting an ESS process

To start an inferior R session on GNU/Linux, macOS, or Windows using the Cygwin bash
shell, simply type M-x R RET. To start an R session on Windows when you use the MS-
DOS/powershell shell, simply type M-x S+6-msdos RET. R will then (by default) ask the
question

R starting data directory?

Enter the name of the directory you wish to have as the working directory (that is, the
directory you wish to have getwd () return if using R).

You will then be popped into a buffer

named ‘*Rx*’ which will be used for interacting with the ESS process, and you can start
entering commands.

3.2 Running more than one ESS process

ESS allows you to run more than one iESS process simultaneously in the same session. Each
process has a name and a number; the initial process

(process 1) is simply named ‘R’. If you call M-x R again without killing the first R process,
ESS will start a second R process with the name ‘R:2’. To have the first buffer named ‘R:1’,
customize the option ess-plain-first-buffername. With a prefix argument, C-u M-x R
allows for the specification of command line options.

ess-plain-first-buffername [User Option]
If non-nil, name the first iESS process [R]. Otherwise, name it [R:1].

You can switch to any active ESS process with the command ‘M-x
ess-request-a-process’. Just enter the name of the process you require; com-
pletion is provided over the names of all running processes. This is a good command to
consider binding to a global key.

3.3 ESS processes on Remote Computers

3.3.1 ESS and TRAMP

ESS works with processes on remote computers as easily as with processes on the local
machine. The recommended way to access a statistical program on remote computer is to
start it with See TRAMP User Manual.

Chapter 3: Interacting with statistical programs 17

Start an ssh session using TRAMP with ‘C-x C-f /ssh:user@host: RET’. Tramp should
open a dired buffer in your remote home directory. Now call your favorite ESS process (R,
Julia, stata etc) as you would usually do on local machine: M-x R.

Alternatively you can start your process normally (M-x R). When asked for starting
directory, simply type ‘/ssh:user@host: RET’. The R process will be started on the remote
machine.

To simplify the process even further create a "config" file in your .ssh/ folder and add
an account. For example if you use amazon EC2, it might look like following:

Host amazon
Hostname ec2-54-215-203-181.us-west-1.compute.amazonaws.com
User ubuntu
IdentityFile ~/.ssh/my_amazon_key.pem
ForwardX11l yes

With this configuration /ssh:amazon: is enough to start a connection. The ForwardX11
is needed if you want to see the R graphic device showing on the current machine

3.3.2 ESS-remote

TRAMP is the recommended way of starting a remote session. The other way to start a
remote ESS connection is through ess-remote.

1. Start a new shell, telnet or ssh buffer and connect to the remote computer (e.g. use,
‘M-x shell’, ‘M-x telnet’ or ‘M-x ssh’; ssh.el is available at https://www.splode.
com/~friedman/software/emacs-lisp/src/ssh.el).

2. Start the ESS process on the remote machine, for example with one of the commands
‘R’, ‘Splus’, or ‘sas -stdio’.

3. Start ‘M-x ess-remote’. You will be prompted for a program name with completion.
Choose one. Your process is now known to ESS. All the usual ESS commands (‘C-c
C-n’ and its relatives) now work with the R language processes. For SAS you need
to use a different command ‘C-c i’ (that is a regular ‘i’, not a ‘C-i’) to send lines
from your myfile.sas to the remote SAS process. ‘C-c i’ sends lines over invisibly.
With ess-remote you get teletype behavior—the data input, the log, and the listing
all appear in the same buffer. To make this work, you need to end every PROC and
DATA step with a "RUN;" statement. The "RUN;" statement is what tells SAS that
it should process the preceding input statements.

4. Graphics (interactive) on the remote machine. If you run X11 (See Section 11.6.2 [X11],
page 52, X Windows) on both the local and remote machines then you should be able to
display the graphs locally by setting the ‘DISPLAY’ environment variable appropriately.
Windows users can download ‘xfree86’ from cygwin.

5. Graphics (static) on the remote machine. If you don’t run the X window system on the
local machine, then you can write graphics to a file on the remote machine, and display
the file in a graphics viewer on the local machine. Most statistical software can write
one or more of postscript, GIF, or JPEG files. Depending on the versions of Emacs and
the operating system that you are running, Emacs itself may display ‘.gif’ and ‘. jpg’
files. Otherwise, a graphics file viewer will be needed. Ghostscript/ghostview may be
downloaded to display ‘.ps’ and ‘.eps’ files. Viewers for GIF and JPEG are usually
included with operating systems. See Section 13.5 [ESS(SAS)—Function keys for batch

https://www.splode.com/~friedman/software/emacs-lisp/src/ssh.el
https://www.splode.com/~friedman/software/emacs-lisp/src/ssh.el

Chapter 3: Interacting with statistical programs 18

processing], page 62, for more information on using the F12 key for displaying graphics
files with SAS.

Should you or a colleague inadvertently start a statistical process in an ordinary
‘*shellx’ buffer, the ‘ess-remote’ command can be used to convert it to an ESS buffer
and allow you to use the ESS commands with it.

3.4 Changing the startup actions

If you do not wish ESS to prompt for a starting directory when starting a new process, set
the variable ess-ask-for-ess-directory to

nil. In this case, the starting directory will be set using one of the following methods:

1. If the variable ess-directory-function stores the name of a function, the value re-
turned by this function is used. The default for this variable is nil.

2. Otherwise, if the variable ess-directory stores the name of a directory (ending in a
slash), this value is used. The default for this variable is nil.

3. Otherwise, the working directory of the current buffer is used.

If ess-ask-for-ess-directory has a non-nil value (as it does by default) then the
value determined by the above rules provides the default when prompting for the starting
directory. Incidentally, ess-directory is an ideal variable to set in ess-pre-run-hook.

You may also customize ess-post-run-hook and the dialect-specific ess—*-post-run-
hook variables. For example, you may want to use ess-load-file to load a file when ESS
starts R:

(add-hook 'ess-r-post-run-hook (lambda () (ess-load-file "foo.R")))

If you like to keep a record of your R actions, set the variable ess-ask-about-transfile
to t, and you will be asked for a filename for the transcript before the ESS process starts.

ess—ask-about-transfile [User Option]
If non-nil, ask for a file name in which to save the session transcript.

Enter the name of a file in which to save the transcript at the prompt. If the file doesn’t
exist it will be created (for R, you likely want it to end in ‘.Rout’). If the file already exists
the transcript will be appended to the file. (Note: if you don’t set this variable but you still
want to save the transcript, you can still do it later — see Section 4.2.4 [Saving transcripts],
page 23.)

Once these questions are answered (if they are asked at all) the inferior process itself is
started.

If you need to pass any arguments to this program, they may be specified in the variable
inferior-S_program_name-args. For example, if inferior-ess-program is "R" then the
variable to set is inferior-R-args.

It is not normally necessary to pass arguments to the iESS program; in particular do not
pass the ‘e’ option to Splus, since ESS provides its own command history mechanism.

ESS can set the width option of inferior processes automatically when the window con-
figuration changes. To do so, set ess—auto-width to a non-nil value. By default, the change
will not be shown in the inferior buffer. If you want it to be shown, set ess-auto-width-
visible to a non-nil value.

Chapter 3: Interacting with statistical programs 19

3.5 Controlling buffer display

Users can control how buffers are displayed by customizing display-buffer-alist, See
Section “Window Choice” in emacs. This section provides examples of how to achieve
certain setups.

Users coming from RStudio may want the R process to appear at the bottom left of the
frame, help buffers to appear at the bottom right, and ess-rdired buffers at the top right.
To achieve that, you could this. Note that the order matters; *R Dired* would match *R if
it came before in the alist.

(setq display-buffer-alist

S ((""*R Dired"
(display-buffer-reuse-window display-buffer-in-side-window)
(side . right)
(slot . -1)
(window-width . 0.33)
(reusable-frames . nil))
(n-~ *R"
(display-buffer-reuse-window display-buffer-at-bottom)
(window-width . 0.5)
(reusable-frames . nil))
(n A*Help"
(display-buffer-reuse-window display-buffer-in-side-window)
(side . right)
(slot . 1)
(window-width . 0.33)
(reusable-frames . nil))))

Some users prefer working with multiple frames where one frame has the source code and
the other frame has the inferior process. To achieve this, use this example. For a detailed
description of reusable-frames, see See Section “Buffer Display Action Alists” in elisp.

(setq display-buffer-alist
] ((II’*RII
(display-buffer-reuse-window display-buffer-pop-up-frame)
(reusable-frames . 0))))

Some users may want the process window to be dedicated to the process so that other
buffers are not shown on top of that window. See Section “Dedicated Windows” in elisp.
For example, this prevents help buffers from being displayed in the window showing the
inferior R process.

(setq display-buffer-alist
"CC"*R"
nil
(dedicated . t))))

By default, ESS usually prefers splitting the frame into multiple windows so that you
can work with both the R script and the R REPL visible at once. If you want to override
this behavior so that the script buffer and the process buffer share the same window, you
can do so like this:

(setq display-buffer-alist

Chapter 3: Interacting with statistical programs 20

"((""*R" . ((display-buffer-same-window) (inhibit-same-window . nil)))[
("\\.R$" . ((display-buffer-same-window) (inhibit-same-window . nil)))))|J}

21

4 Interacting with the ESS process

The primary function of the ESS package is to provide an easy-to-use front end to the R
interpreter. This is achieved by running the R process from within an Emacs buffer, called
hereafter inferior buffer, which has an active inferior-ess-mode. The features of inferior
R mode are similar to those provided by the standard Emacs shell mode (see Section “Shell
Mode” in The Gnu Emacs Reference Manual). Command-line completion of R objects and
a number of ‘hot keys’ for commonly-used R commands are also provided for ease of typing.

4.1 Entering commands and fixing mistakes

Sending a command to the ESS process is as simple as typing it in and pressing the RETURN
key:

inferior-ess-send-input [Command]|
RET Send the command on the current line to the ESS process.

If you make a typing error before pressing RET all the usual Emacs editing commands are
available to correct it (see Section “Basic editing commands” in The GNU Emacs Reference
Manual). Once the command has been corrected you can press RETURN (even if the cursor
is not at the end of the line) to send the corrected command to the ESS process.

Emacs provides some other commands which are useful for fixing mistakes:

C-c C-w backward-kill-word Deletes the previous word (such as an object name) on
the command line.

C-c C-u comint-kill-input Deletes everything from the prompt to point. Use this to
abandon a command you have not yet sent to the ESS process.

C-a comint-bol Move to the beginning of the line, and then skip forwards past the
prompt, if any.

See Section “Shell Mode” in The Gnu Emacs Reference Manual, for other commands
relevant to entering input.

4.2 Manipulating the transcript

Most of the time, the cursor spends its time at the bottom of the ESS process buffer,
entering commands. However all the input and output from the current (and previous)
ESS sessions is stored in the process buffer (we call this the transcript) and often we want
to

move back up through the buffer, to look at the output from previous commands for
example.

Within the process buffer, a paragraph

is defined as the prompt, the command after the prompt, and the output from the
command. Thus M-{ and M-} move you backwards and forwards, respectively, through
commands in the transcript. A particularly useful command is M-h (mark-paragraph)
which will allow you to mark a command and its entire output (for deletion, perhaps).
For more information about paragraph commands, see Section “Paragraphs” in The GNU
Emacs Reference Manual.

Chapter 4: Interacting with the ESS process 22

If an ESS process finishes and you restart it in the same process buffer, the output from
the new ESS process appears after the output from the first ESS process separated by a
form-feed (‘"L’) character. Thus pages in the ESS

process buffer correspond to ESS sessions. Thus, for example, you may use C-x [and
C-x] to move backward and forwards through ESS sessions in a single ESS process buffer.
For more information about page commands, see Section “Pages” in The GNU Emacs
Reference Manual.

4.2.1 Manipulating the output from the last command

Viewing the output of the command you have just entered is a common occurrence and
ESS provides a number of facilities for doing this. Whenever a command produces output,
it is possible that the window will scroll, leaving the next prompt near the middle of the
window. The first part of the command output may have scrolled off the top of the window,
even though the entire output would fit in the window if the prompt were near the bottom
of the window. If this happens, you can use the following comint commands:

comint-show-maximum-output to move to the end of the buffer, and place cursor on
bottom line of window to make more of the last output visible. To make this happen
automatically for all inputs, set the variable comint-scroll-to-bottom-on-input to t or
'this. If the first part of the output is still not visible, use

C-c C-r (comint-show-output),

which moves cursor to the previous command line and places it at the top of the window.
Finally, if you want to discard the last command output altogether, use

C-c C-o (comint-delete-output),

which deletes everything from the last command to the current prompt. Use this com-
mand judiciously to keep your transcript to a more manageable size.

4.2.2 Viewing older commands

If you want to view the output from more historic commands than the previous command,
commands are also provided to move backwards and forwards through previously entered
commands in the process buffer:

C-c C-p comint-previous-prompt Moves point to the preceding prompt in the process
buffer.

C-c C-n comint-next-prompt Moves point to the next prompt in the process buffer.

Note that these two commands are analogous to C-p and C-n but apply to command lines
rather than text lines. And just like C-p and C-n, passing a prefix argument to these com-
mands means to move to the ARG’th next (or previous) command. (These commands are
also discussed in Section “Shell History Copying” in The GNU Emacs Reference Manual.)

There are also two similar commands (not bound to any keys by default) which move
to preceding or succeeding commands, but which first prompt for a regular expression (see
Section “Syntax of Regular Expression” in The GNU Emacs Reference Manual), and then
moves to the next (previous) command matching the pattern.

Chapter 4: Interacting with the ESS process 23

comint-backward-matching-input regexp arg

comint-forward-matching-input regexp arg
Search backward (forward) through the transcript buffer for the arg’th previ-
ous (next) command matching regexp. arg is the prefix argument; regexp is
prompted for in the minibuffer.

4.2.3 Re-submitting commands from the transcript

When moving through the transcript, you may wish to re-execute some of the commands
you find there. ESS provides commands to do this; these commands may be used whenever
the cursor is within a command line in the transcript (if the cursor is within some command
output, an error is signaled). Note all commands involve the RETURN key.

RET inferior-ess-send-input See Section 4.1 [Command-line editing], page 21.

C-c RET comint-copy-old-input Copy the command under the cursor to the current
command line, but don’t execute it. Leaves the cursor on the command line so
that the copied command may be edited.

When the cursor is not after the current prompt, the RETURN key has a slightly different
behavior than usual. Pressing RET on any line containing a command that you entered (i.e.
a line beginning with a prompt) sends that command to the ESS process once again. If you
wish to edit the command before executing it, use C-c RET instead; it copies the command
to the current prompt but does not execute it, allowing you to edit it before (re)submitting
it.

These commands work even if the current line is a continuation line (i.e. the prompt
is ‘+” instead of ‘>’) — in this case all the lines that form the multi-line command are
concatenated together and the resulting command is sent to the ESS process (currently this
is the only way to resubmit a multi-line command to the ESS process in one go). If the
current line does

not begin with a prompt, an error is signalled. This feature, coupled with the command-
based motion commands described above, could be used as a primitive history mechanism.
ESS provides a more sophisticated mechanism, however, which is described in Section 4.3
[Command History], page 24.

4.2.4 Keeping a record of your R session

To keep a record of your R session in a disk file, use the Emacs command C-x C-w (write-
file) to attach a file to the ESS process buffer. The name of the process buffer will
(probably) change to the name of the file, but this is not a problem. You can still use R as
usual; just remember to save the file before you quit Emacs with C-x C-s. You can make
ESS prompt you for a filename in which to save the transcript every time you start R by
setting the variable

ess-ask-about-transfile to t; See Section 3.4 [Customizing startup], page 18.

For R files, naming transcript files ‘*.Rout’ puts them in a special mode (ESS transcript
mode — see Chapter 6 [Transcript Mode], page 32) for editing transcript files which is
automatically selected for files with this suffix.

R transcripts can get very large, so some judicious editing is appropriate if you are saving
it in a file. Use C-c C-o whenever a command produces excessively long output (printing

Chapter 4: Interacting with the ESS process 24

large arrays, for example). Delete erroneous commands (and the resulting error messages
or other output) by moving to the command (or its output) and typing M-h C-w. Also,
remember that C-c C-x (and other hot keys) may be used for commands whose output you
do not wish to appear in the transcript. These suggestions are appropriate even if you are
not saving your transcript to disk, since the larger the transcript, the more memory your
Emacs process will use on the host machine.

You can use ess-transcript-clean-region to strip output from a transcript, leaving
only source code suitable for inclusion in files source ()-able from R. see Section 6.2 [Clean],
page 32,

4.3 Command History

ESS provides easy-to-use facilities for re-executing or editing previous commands. An input
history of the last few commands is maintained (by default the last 500 commands are
stored, although this can be changed by setting the variable comint-input-ring-size in

inferior-ess-mode-hook.) The simplest history commands simply select the next and
previous commands in the input history:

M-p comint-previous-input Select the previous command in the input history.
M-n comint-next-input Select the next command in the input history.

For example, pressing M-p once will re-enter the last command into the process buffer after
the prompt but does not send it to the ESS process, thus allowing editing or correction of
the command before the ESS process sees it. Once corrections have been made, press RET
to send the edited command to the ESS process.

If you want to select a particular command from the history by matching it against a
regular expression (see Section “Syntax of Regular Expression” in The GNU Emacs Refer-
ence Manual), to search for a particular variable name for example, these commands are
also available:

M-r comint-history-isearch-backward-regexp Prompt for a regular expression,
and search backwards through the input history for a command matching the
expression.

A common type of search is to find the last command that began with a particular sequence
of characters; the following two commands provide an easy way to do this:

C-c M-r comint-previous-matching-input-from-input Select the previous command
in the history which matches the string typed so far.

C-c M-s comint-next-matching-input-from-input Select the next command in the
history which matches the string typed so far.

Instead of prompting for a regular expression to match against, as they instead select
commands starting with those characters already entered. For instance, if you wanted to
re-execute the last attach() command, you may only need to type att and then C-c M-r
and RET.

See Section “Shell History Ring” in The GNU Emacs Reference Manual, for a more
detailed discussion of the history mechanism, and do experiment with the In/0Out menu to
explore the possibilities.

Chapter 4: Interacting with the ESS process 25

Many ESS users like to have even easier access to these, and recommend adding some-
thing like
(eval-after-load "comint"
' (progn

(define-key comint-mode-map [up]
'comint-previous-matching-input-from-input)

(define-key comint-mode-map [down]
'comint-next-matching-input-from-input)

;; also recommended for ESS use --

(setq comint-move-point-for-output 'others)

;; somewhat extreme, almost disabling writing in *R*, *shell* buffers above prom
(setq comint-scroll-to-bottom-on-input 'this)

)

to your Emacs configuration file, where the last two settings are typically desirable for
the situation where you work with a script (for example, code.R) and send code chunks to
the process buffer (e.g. *R*). Note however that these settings influence all comint-using
Emacs modes, not just the ESS ones, and for that reason, these customization cannot be
part of ESS itself.

4.3.1 Saving the command history

The ess-history-file variable, which is t by default, together with ess-history-
directory, governs if and where the command history is saved and restored between
sessions. By default, ess-history-directory is nil, and the command history will be
stored (as a file) in the same directory as the iESS process.
ESS users may work exclusively with script files rather than in a iESS session, and may

not want to save any history files. To do so:

(setq ess-history-file nil)
or if you prefer only one global command history file:

(setq ess-history-directory "~/.R/")

in your Emacs configuration file.

4.4 References to historical commands

Instead of searching through the command history using the command described in the pre-
vious section, you can alternatively refer to a historical command directly using a notation
very similar to that used in csh. History references are introduced by a ‘!’ or ‘~’ character
and have meanings as follows:

oy The immediately previous command

- The Nth previous command
‘Itext’ The last command beginning with the string ‘text’
‘“17text’ The last command containing the string ‘text’

In addition, you may follow the reference with a word designator to select particular
words of the input. A word is defined as a sequence of characters separated by whitespace.

Chapter 4: Interacting with the ESS process 26

(You can modify this definition by setting the value of comint-delimiter-argument-list
to a list of characters that are allowed to separate words and

themselves form words.) Words are numbered beginning with zero. The word designator
usually begins with a ‘:” (colon) character; however it may be omitted if the word reference
begins with a *~’, ‘$’, ‘¢’ or ‘=’. If the word is to be selected from the previous command, the
second ‘!’ character can be omitted from the event specification. For instance, ‘!!:1” and
‘1:1” both refer to the first word of the previous command, while ‘! !$’ and ‘!'$’ both refer
to the last word in the previous command. The format of word designators is as follows:

‘0’ The zeroth word (i.e. the first one on the command line)
n The nth word, where n is a number

The first word (i.e. the second one on the command line)

‘¢ The last word

‘x-y’ A range of words; ‘-y’ abbreviates ‘0-y’

7 All the words except the zeroth word, or nothing if the command had just one
word (the zeroth)

xx’ Abbreviates x-$

‘x=’ Like ‘x*’, but omitting the last word

In addition, you may surround the entire reference except for the first ‘!’ by braces to
allow it to be followed by other (non-whitespace) characters (which will be appended to the
expanded reference).

(~

)

Finally, ESS also provides quick substitution; a reference like ‘~0ld"new”’ means “the
last command, but with the first occurrence of the string ‘0ld’ replaced with the string
‘new’” (the last ‘~’ is optional). Similarly, ‘~01d~’ means “the last command, with the first

occurrence of the string ‘01d’ deleted” (again, the last ‘*” is optional).

To convert a history reference as described above to an input suitable for R, you need
to expand the history reference, using the TAB key. For this to work, the cursor must be
preceded by a space (otherwise it would try to complete an object name) and not be within
a string (otherwise it would try to complete a filename). So to expand the history reference,
type SPC TAB. This will convert the history reference into an R command from the history,
which you can then edit or press RET to execute.

For example, to execute the last command that referenced the variable data, type ! ?data
SPC TAB RET.

4.5 Hot keys for common commands

ESS provides a number of commands for executing the commonly used functions. These
commands below are basically information-gaining commands (such as objects() or
search()) which tend to clutter up your transcript and for this reason some of the hot
keys display their output in a temporary buffer instead of the process buffer by default.
This behavior is controlled by the following option:

ess-execute-in-process-buffer [User Option]
If non-nil, means that these commands will produce their output in the process
buffer instead.

Chapter 4: Interacting with the ESS process 27

In any case, passing a prefix argument to the commands (with C-u) will reverse the
meaning of ess-execute-in-process-buffer for that command. In other words, the
output will be displayed in the process buffer if it usually goes to a temporary buffer, and
vice-versa. These are the hot keys that behave in this way:

ess-execute-objects posn [Command]
C-c C-x Sends the objects() command to the ESS process. A prefix argument
specifies the position on the search list (use a negative argument to toggle ess-
execute-in-process-buffer as well). This is a quick way to see what objects are
in your working directory. A prefix argument of 2 or more means get objects for that
position. A negative prefix argument posn gets the objects for that position, as well
as toggling ess-execute-in-process-buffer.

ess—-execute-search invert [Command]
C-c C-s Sends the inferior-ess-search-list-command command to the
ess-language process; search() in R. Prefix invert toggles ess-execute-in-
process-buffer.

ess—execute may seem pointless when you could just type the command in anyway, but
it proves useful for ‘spot’ calculations which would otherwise clutter your transcript, or for
evaluating an expression while partway through entering a command. You can also use this
command to generate new hot keys using the Emacs keyboard macro facilities; see Section
“Keyboard Macros” in The GNU Emacs Reference Manual.

The following hot keys do not use ess-execute-in-process-buffer to decide where
to display the output — they either always display in the process buffer or in a separate
buffer, as indicated:

ess-load-file filename [Command]
C-c M-1 Prompts for a file (filename) to load into the ESS process using source().
If there is an error during loading, you can jump to the error in the file with the
following function.

ess-parse-errors arg reset [Command]
Visits next next-error message and corresponding source code. If all the error
messages parsed so far have been processed already, the message buffer is checked for
new ones. A prefix arg specifies how many error messages to move; negative means
move back to previous error messages. Just C-u as a prefix means reparse the error
message buffer and start at the first error. The reset argument specifies restarting
from the beginning.

See Section 7.3 [Error Checking], page 34, for more details.

ess-display-help-on-object object command [Command]
C-c C-v Pops up a help buffer for an R object or function. If command is supplied, it
is used instead of inferior-ess-help-command. See Chapter 8 [Help], page 40, for
more details.

ess-quit [Command]
C-c C-q Issue an exiting command to the inferior process, additionally also running
ess-cleanup for disposing of any temporary buffers (such as help buffers and edit

Chapter 4: Interacting with the ESS process 28

buffers) that may have been created. Use this command when you have finished your
R session instead of simply quitting at the inferior process prompt, otherwise you
will need to issue the command ess-cleanup explicitly to make sure that all the files
that need to be saved have been saved, and that all the temporary buffers have been
killed.

4.6 Is the Statistical Process running under ESS?

For the R languages (R, S, S-Plus) ESS sets an option in the current process that programs
in the language can check to determine the environment in which they are currently running.

ESS sets options(STERM="iESS") for R language processes running in an inferior
iESS[S] or iESS[R] buffer.

ESS sets options (STERM="ddeESS") for independent S-Plus for Windows processes run-
ning in the GUI and communicating with ESS via the DDE (Microsoft Dynamic Data
Exchange) protocol through a ddeESS[S] buffer.

Other values of options () $STERM that we recommend are:
e length: Fixed length xterm or telnet window.
e scrollable: Unlimited length xterm or telnet window.
e server: S-Plus Stat Server.
e BATCH: BATCH.
e Rgui: R GUL
e Commands: S-Plus GUI without DDE interface to ESS.
Additional values may be recommended in the future as new interaction protocols are

created. Unlike the values iESS and ddeESS, ESS can’t set these other values since the R
language program is not under the control of ESS.

4.7 Using emacsclient

When starting R or S under Unix, ESS sets options(editor="emacsclient"). Under
Microsoft Windows, it will use gnuclient.exe rather than emacsclient, but the same prin-
cipal applies. Within your R session, if you have a function called iterator, typing
fix(iterator), will show that function in a temporary Emacs buffer. You can then correct
the function. When you kill the buffer, the definition of the function is updated. Using
edit () rather than fix() means that the function is not updated. Finally, the R function
page (x) will also show a text representation of the object x in a temporary Emacs buffer.

4.8 Other commands provided by inferior-ESS
The following commands are also available in the process buffer:
comint-interrupt-subjob [Command]

C-c C-c Sends a Control-C signal to the iESS process. This has the effect of aborting
the current command.

Chapter 4: Interacting with the ESS process 29

ess-switch-to-inferior-or-script-buffer toggle-eob [Command]|
C-c C-z When in process buffer, return to the most recent script buffer. When in a
script buffer pop to the associated process buffer. Consecutive presses of C-z switch
between the script and process buffers.

If toggle-eob is given, the value of ess-switch-to-end-of-proc-buffer is toggled.

ess-switch-to-end-of-proc-buffer [User Option]
If non-nil, ess-switch-to-inferior-or-script-buffer goes to end of process
buffer.

Other commands available in iESS modes are discussed in Section “Shell Mode” in The
Gnu Emacs Reference Manual.

30

5 Sending code to the ESS process

Other commands are also available for evaluating portions of code in the R process. These
commands cause the selected code to be evaluated directly by the ESS process as if you had
typed them in at the command line; the source() function is not used. You may choose
whether both the commands and their output appear in the process buffer (as if you had
typed in the commands yourself) or if the output alone is echoed. The behavior is controlled
by the variable:

ess-eval-visibly [User Option]
Non-nil means ess-eval-* commands display commands and output in the process
buffer. A value of t blocks Emacs while R is busy. A value of nowait does not block
Emacs but printing may be slightly off.

Passing a prefix (C-u) (in Elisp terms, the argument VIS) to any of the following com-
mands, however, reverses the meaning of ess-eval-visibly for that command only —
for example C-u C-c C-j evaluates the current line without showing the input in the iESS
buffer. The default value of ess-eval-visibly (t) means that ESS calls block Emacs until
they finish. This may be undesirable, especially if commands take long to finish. Users
who want input to be displayed and Emacs not to be blocked can set ess-eval-visibly
to 'nowait. This sends the input to the iESS buffer but does not wait for the process to
finish, ensuring Emacs is not blocked.

Primary commands for evaluating code are:

ess-eval-region-or-line-and-step vis [Command]|
C-<RET> Sends the highlighted region or current line and step to next line of code.

ess—-eval-region-or-function-or-paragraph vis [Command]
C-M-x Sends the current selected region or function or paragraph.

ess—eval-region-or-function-or-paragraph-and-step vis [Command]|
C-c C-c Like ess-eval-region-or-function-or-paragraph but steps to next line
of code.

Other, not so often used, evaluation commands are:

ess-eval-line vis [Command]
C-c C-j Sends the current line to the ESS process.

ess-eval-line-and-go vis [Command]
C-c M-j Like ess-eval-line but additionally switches point to the ESS process.

ess-eval-function vis no-error [Command]
C-c C-f Sends the function containing point to the ESS process.

ess-eval-function-and-go vis [Command]|
C-c M-f Like ess-eval-function but additionally switches point to the ESS process.

ess-eval-region start end toggle message [Command]|
C-c C-r Sends the current region to the ESS process.

Chapter 5: Sending code to the ESS process 31

ess-eval-region-and-go start end vis [Command]
C-c M-r Like ess-eval-region but additionally switches point to the ESS process.

ess-eval-buffer vis [Command]
C-c C-b Sends the current buffer to the ESS process.

ess-eval-buffer-and-go vis [Command]
C-c M-b Like ess-eval-buffer but additionally switches point to the ESS process.

All the above ess-eval-* commands are useful for evaluating small amounts of code
and observing the results in the process buffer for debugging purposes, or for generating
transcripts from source files. When editing R functions, it is generally preferable to use C-c
C-1 to update the function’s value. In particular, ess-eval-buffer is now largely obsolete.

A useful way to work is to divide the frame into two windows; one containing the source
code and the other containing the process buffer. If you wish to make the process buffer
scroll automatically when the output reaches the bottom of the window, you will need to
set the variable comint-move-point-for-output to 'others or t.

32

6 Manipulating saved transcript files

Inferior R mode records the transcript (the list of all commands executed, and their output)
in the process buffer, which can be saved as a transcript file, which should normally have
the suffix .Rout. The most obvious use for a transcript file is as a static record of the
actions you have performed in a particular R session. Sometimes, however, you may wish
to re-execute commands recorded in the transcript file by submitting them to a running
ESS process. This is what Transcript Mode is for.

If you load file a with the suffix .Rout into Emacs, it is placed in R Transcript Mode.
Transcript Mode is similar to inferior R mode (see Chapter 4 [Entering commands], page 21):

paragraphs are defined as a command and its output, and you can move though com-
mands either with the paragraph commands or with C-c¢ C-p and C-c C-n.

6.1 Resubmitting commands from the transcript file

Three commands are provided to re-submit command lines from the transcript file to a
running ESS process. They are:

ess-transcript-send-command [Command]
M-RET Sends the current command line to the ESS process, and execute it.

ess-transcript-copy-command [Command]
C-c RET Copy the current command to the ESS process, and switch to it (ready to
edit the copied command).

ess-transcript-send-command-and-move [Command]
RET Sends the current command to the ESS process, and move to the next command
line. This command is useful for submitting a series of commands.

Note that the first two commands are similar to those on the same keys in inferior R Mode.
In all three cases, the commands should be executed when the cursor is on a command line
in the transcript; the prompt is automatically removed before the command is submitted.

6.2 Cleaning transcript files

Yet another use for transcript files is to extract the command lines for inclusion in an R
source file or function. Transcript mode provides one command which does just this:

ess—-transcript-clean-region beg end even-if-read-only [Command]
C-c C-w Strip the transcript in the region (given by beg and end), leaving only com-
mands. Deletes any lines not beginning with a prompt, and then removes the prompt
from those lines that remain. Prefix argument even-if-read-only means to clean even
if the buffer is read-only. Don’t forget to remove any erroneous commands first!

The remaining command lines may then be copied to a source file or edit buffer for inclusion
in a function definition, or may be evaluated directly (see Chapter 5 [Evaluating code],
page 30) using the code evaluation commands from R mode, also available in R Transcript
Mode.

33

7 Editing objects and functions

ESS provides facilities for editing R objects within your Emacs session. Most editing is
performed on R functions, although in theory you may edit datasets as well. Edit buffers
are always associated with files, although you may choose to make these files temporary
if you wish. Alternatively, you may make use of a simple yet powerful mechanism for
maintaining backups of text representations of R functions. Error-checking is performed
when R code is loaded into the ESS process.

7.1 Creating or modifying R objects
To edit an object, type

ess—-dump-object-into-edit-buffer object [Command]
C-c C-e C-d Edit an object in its own edit buffer.

from within the iESS process buffer (*R*). You will then be prompted for an object
to edit: you may either type in the name of an existing object (for which completion is
available using the TAB key),

or you may enter the name of a new object.

A buffer will be created containing the text representation of the requested object or,
if you entered the name of a non-existent object at the prompt and the variable ess-
function-template

is non-nil, you will be presented with a template defined by that variable, which defaults
to a skeleton function construct.

You may then edit the function as required. The edit buffer generated by ess-dump-
object-into-edit-buffer is placed in the ESS major mode which provides a number of
commands to facilitate editing R source code. Commands are provided to intelligently
indent R code, evaluate portions of R code and to move around R code constructs.

Note: when you dump a file with C-c C-e C-d, ESS first checks to see whether there
already exists an edit buffer containing that object and, if so, pops you directly to that
buffer. If not, ESS next checks whether there is a file in the appropriate place with the
appropriate name (see Section 7.6 [Source Files|, page 36) and if so, reads in that file. You
can use this facility to return to an object you were editing in a previous session (and which
possibly was never loaded to the R session). Finally, if both these tests fail, the ESS process
is consulted and a dump() command issued.

If you want to force ESS to ask the ESS process for the object’s definition (say, to
reformat an unmodified buffer or to revert back to R’s idea of the object’s definition) pass
a prefix argument to ess-dump-object-into-edit-buffer by typing C-u C-c C-e C-d.

7.2 Loading source files into the ESS process

The best way to get information — particularly function definitions — into R is to load
them in as source file, using R’s source function. You have already seen how to create
source files using C-c C-e C-d; ESS provides a complementary command for loading source
files (even files not created with ESS!) into the ESS process, namely ess-load-file (C-c
M-1).

Chapter 7: Editing objects and functions 34

see Section 4.5 [Hot keys], page 26.

After typing C-c M-1 you will prompt for the name of the file to load into R; usually this
is the current buff